• Title/Summary/Keyword: Dipole patch antenna

Search Result 29, Processing Time 0.026 seconds

The Optimal Design of a Triple-Band Antenna with Additional Arm Resonating Structure for LTE, ISM and WLAN Application (LTE, ISM, WLAN에 적용 가능한 Arm 구조 삼중대역 안테나 최적 설계)

  • Lee, Seung-Je;Oh, Seung-Hun;Lee, Jeong-Hyeok;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1655-1660
    • /
    • 2014
  • In this paper, we propose a design of a triple-band microstrip circular patch antenna. The proposed antenna generates the triple frequency resonance at 1.85GHz(LTE), 2.45GHz(ISM) and 5.5GHz(WLAN). Firstly, we design the dual-band antenna. The dual-band antenna consist of the circular patch, slits, and the slot. The circular patch and slot are designed for dual frequency of 2.45GHz and 5.5GHz, respectively. And then the dual-band antenna is combined with additional arm-shaped structure for the triple-band characteristic. The arm-shaped structure is operated as the dipole. It is designed for lowest frequency of 1.85GHz. Each part of the antenna unites to a new structure. In order to design the proposed antenna automatically and optimally, APSO algorithm is adopted. During APSO, the mismatch of the proposed antenna is resolved. The optimal designed antenna has an acceptable return loss(-10dB) at each bands(i.e, 1.85GHz, 2.45GHz and 5.5GHz).

Design of the Aperture Coupled Microstrip Antenna with Tilted Beam (빔 틸팅 특성을 갖는 개구 급전 마이크로스트립 안테나 설계 연구)

  • 하재권;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.705-712
    • /
    • 2001
  • In this paper, a new type of aperture coupled microstrip patch antenna with tilted-beam based on the principal of the dipole yagi antenna is proposed and investigated experimentally. Its configuration is composed by 3 types of patches; reflector, driver, and director. Tilted beam patterns are effected by many parameters as those of dipole yagi antenna; sizes of the patches, gaps between the patches, characteristics of the substrates, feeding method and etc. Therefore, in this paper, the effects of varying design parameters of this antenna are studied with a goal of enhancing the gain and tilting the beams. A microtrip patch antenna with tilted beam based on performance trade-offs is designed and fabricated. Measured and simulated results for return loss and radiation patterns are presented. It has 45$^{\circ}$ tilted beam and very close to simulation beam pattern at resonant frequency, 2.58 GHz.

  • PDF

Design of Broadband CPW-Fed Square Slot Antennas (CPW 급전 광대역 사각 슬롯 안테나 설계)

  • Choi, Soon-Shin;Kim, Joon-Il;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.107-115
    • /
    • 2005
  • This paper presents the structure of a broadband coplanar waveguide(CPW) fed square slot antenna with a impedance bandwidth tuning patch. The designing method of the antenna suggests that two resonant frequencies are excited as a dual-frequency dipole antenna following the dimensions of the square slot. In other words, the lower resonant frequency mainly depends on the slot width and the higher one its length. A CPW fed square slot antenna with a impedance tuning patch was measured to $20GHz^\~33GHz$, $50\%$, VSWR=2 impedance bandwidth by adjusting the dimensions of the tuning patch when the slot length had $70\%$ of its width. This result shows that a medical CPW fed antenna is easily implemented with a simple square slot structure including a bandwidth tuning patch in the center.

A Study of the Radiation Characteristics of Novel Printed Antenna Composed of Dual Elements with Different Shape (다른 형태를 가진 2소자 프린트 안테나의 방사특성에 관한 연구)

  • Lee, Chai-Bong;Kim, Jung-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.141-145
    • /
    • 2008
  • When the current flows to parallel lines with different length, it is researched that the radiation is occured by the common-mode current radiates, and the small light weight antenna composed of dual elements by using the principle is proposed. However, there is a problem in production about this antenna because this liner antenna is structured by combining with wires. In this paper, we improved this liner antenna, and designed the plane antenna composed of dual elements with different length in the plane printed board to produce and to design easily. Furthermore, the antenna with the wide-band characteristic is also designed in the same board. The radiation pattern is similar to the dipole antenna on account of designing the triangular patch S, the notch and two tapers in patch S, the notch and two tapers in the antenna element. In result, it was able to design the antenna working wider band-width(the bandwidth ratio about 58%, $VSWR{\le}2$).

  • PDF

Analysis of GPR antenna by using the moment methods (모멘트 방법을 이용한 GPR용 안테나 해석)

  • 이상준;김세윤
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.9-16
    • /
    • 1998
  • The nput impedance of a patch-tupe dipole antenna for GPR is calculated by using the moment methods in case that the surrounding medium is modeled on a multi-layer structure consisting of lossy dielectircs. When the cone-type function equivalent to pulse basis function in employed, one of the double integration can be performed analytically. The remaining integration is excuted numerically in a finite rnage and analytically in asymptotic region. The current distributions and input impedances of those antennas are calculated numerically.

  • PDF

Design of a Broadband Quasi-Yagi Antenna fed by a Microstrip with a Shorted End (단락종단된 마이크로스트립으로 급전되는 광대역 quasi-Yagi 안테나 설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.70-73
    • /
    • 2012
  • In this paper, we introduce a design method for a quasi-Yagi antenna (QYA) with broadband characteristics of an impedance bandwidth ratio of > 2 : 1 and a gain of > 4 dBi. The QYA is fed by a microstrip line fabricated on a coplanar strip line and it consists of 3 elements; a planar dipole, a nearby director close to the dipole, and a ground plane reflector. By placing a rectangular patch-type director with large width near to the dipole driver, broadband characteristics are achieved. An optimized 3-element QYA for operation over 1.6-3.5 GHz (bandwidth ratio 2.2 : 1) is fabricated on an FR4 substrate with a size of $90mm{\times}90mm$ and tested experimentally. The results show an impedance bandwidth of 1.56-3.74 GHz (bandwidth ratio 2.4 : 1) for VSWR < 2, a peak gain of 4.41-6.53 dBi, and a front-to-back ratio (FBR) > 13.6 dB within the bandwidth.

  • PDF

Design of a Broadband Quasi-Yagi Antenna with a 2:1 Impedance Bandwidth Ratio (2:1 임피던스 대역폭 비를 가지는 광대역 quasi-Yagi 안테나 설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho;Park, Jin-Taek
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.760-765
    • /
    • 2012
  • In this paper, we studied a design method for a quasi-Yagi antenna (QYA) with broadband characteristics of an impedance bandwidth ratio greater than 2 : 1 and a gain > 4 dBi. The QYA is fed by a microstrip line fabricated on a coplanar strip line and it consists of 3 elements; a planar dipole, a nearby director close to the dipole, and a ground plane reflector. By placing a wide rectangular patch-type director near to the dipole driver, broadband characteristics are achieved. An optimized 3-element QYA for operation over 1.6-3.5 GHz (bandwidth ratio 2.2 : 1) is fabricated on an FR4 substrate with a size of 90 mm by 90 mm and tested experimentally. The results show an impedance bandwidth of 1.56-3.74 GHz (bandwidth ratio 2.4 : 1) for VSWR < 2, a peak gain of 4.2-6.3 dBi, and a front-to-back ratio (FBR) > 13.6 dB within the bandwidth.

Design and Analysis of Ultra-WideBand(UWB) Microstrip patch Dipole Antenna (초광대역(UWB) 마이크로스트립 패치 다이폴 안테나 설계 및 분석)

  • Chang Soo-Keun;Ko Kwang Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.193-196
    • /
    • 2004
  • This paper have a whole azimuth Omni-directional radiation pattern and will become the good radiation efficiency for applies in the steeve antenna and form which is the appearance. We contain by whole course of actual implement model to antenna design. And we will confirm the efficiency the analysis of the antenna to design and through a simulated experiment according to the implementation Ideal characteristic of the antenna to be used between 3.1 and 10.6 GHz of UWB.

  • PDF

Wide and Dual-Band MIMO Antenna with Omnidirectional and Directional Radiation Patterns for Indoor Access Points

  • Yeom, Insu;Jung, Young Bae;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.20-30
    • /
    • 2019
  • A wide-band multiple-input multiple-output (MIMO) antenna with dual-band (2.4 and 5 GHz) operation is proposed for premium indoor access points (IAPs). Typically, an omni-directional pattern is used for dipole antennas and a directional radiation pattern is used for patch antennas. In this paper, both antenna types were used to compare their performance with that of the proposed $2{\times}2$ MIMO antenna. We simulated and measured the performance of the MIMO antenna, including the isolation, envelope correlation coefficient (ECC), mean effective gain (MEG) for the IAPs, and the throughput, in order to determine its communication quality. The performance of the antennas was analyzed according to the ECC and MEG. The proposed antenna has sufficient performance and excellent characteristics, making it suitable for IAPs. We analyzed the communication performance of wireless networks using the throughput data of a typical office environment. The network throughput of an 802.11n device was used for the comparison and was conducted according to the antenna type. The results showed that the values of the ECC, MEG, and the throughput have unique characteristics in terms of their directivity, antenna gains, isolation, etc. This paper also discusses the communication performance of various aspects of MIMO in multipath situations.

Study on a Novel Feeding Method for Broadband Yagi Antenna for DTV (DTV용 광대역 야기 안테나 새로운 급전방법 연구)

  • Lee, Jong-Ig;Park, Jin-Taek;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.475-476
    • /
    • 2015
  • In this paper, we introduce a novel feeding method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) receiving. The balun between the balanced coplanar strip (CPS) line feeding the driver dipole and the unblanaced microstrip line is a rectangular patch inserted into the CPS line along the center of the CPS. The end of the balun is connected to the CPS line through a shorting pin. The effects of various geometrical parameters and balun on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV.

  • PDF