In this study, aniline dioxygenase genes responsible for initial catabolism of aniline in Burkholderia sp. HY1 and Delftia sp. HY99 were cloned and the amino acid sequences were comparatively analyzed, which already have been reported as bacteria utilizing aniline as a sole source of carbon and nitrogen, B. sp. HY1 was found to have at least a plasmid, and the plasmld-cured strain, B. sp. HY1-PC obtained using mitomycin C was tested with wild type strain to investigate whether the former maintained the degradability for aniline. This proved that the aniline oxygenase gene from B. sp. HY1 was located in chromosomal DNA, not in plasmid DNA. Aniline dioxygenase small subunits from B. sp. HY1 and D. sp. HY99 were found, based on 146 amino acids, to share 79% similarity. Notably, ado2 genes from B. sp. HY1 and D. sp. HY99 which were found to be terminal dioxygenase of aniline dioxygenase small subunit showed 99% similarity in the deduced amino acid sequences with tdnA2 of Frateuria sp. ANA-18 and danA2 of D. sp. AN3, respectively. Besides, enzyme assay and amino acid sequence analysis of catechol dioxygenase supported the previous report that B. sp. HY1 might occupy ortho-cleavage pathway using catechol 1,2-dioxygenase, while D. sp. HY99 might occupy catechol 2,3-dioxygenase for meta-cleavage pathway.
KIM, YEO-JUNG;NA-RI LEE;SOON-YOUNG CHOI;KYUNG-HEE MIN
Journal of Microbiology and Biotechnology
/
v.12
no.1
/
pp.172-175
/
2002
The complete nucleotide sequence of the nahC gene from Pseudomonas fluorescens, the structural gene for 1,2-dihydroxynaphthalene (1,2-DHN) dioxygenase, was determined. The 1,2-DHN dioxygenase is an extradiol ring-cleavage enzyme that cleaves the first ring of 1,2-dihydroxynaphthalene. The amino acid sequence of the dioxygenase deduced from the nucleotide sequence suggested that the holoenzyme consists of eight identical subunits with a molecular weight of approximately 34,200. The amino acid sequence of 1,2-DHN dioxygenase showed more than $90\%$ homology with those of the dioxygenases of other Pseudomonas strains. However, sequence similarity with those of the Sphingomonas species was less than $60\%$. The nahC gene of P. fluorescens was moderately expressed in E. coli NM522, as determined by enzymatic activity.
The aromatic dioxygenase system in Sphingomonas yanoikuyae strain Bl consists of three components, an oxygenase, a ferredoxin, and a reductase. The insertional knockout of the bphA4 gene encoding a reductase and subsequent complementation experiments showed that the reductase encoded by bphA4 in S. yanoikuyae strain Bl is associated with multiple dioxygenase components including that of toluate dioxygenase (XyIXY).
Kim, Ji-Young;Kim, Chi-Kyung;Ka, Jong-Ok;Min, Kyung-Hee;Park, Yong-Keun
Microbiology and Biotechnology Letters
/
v.24
no.6
/
pp.657-663
/
1996
Pseudomonas sp. P20 isolated from the polluted environment is capable of degrading biphenyl and 4-chlorobiphenyl. The pcbABCD genes responsible for degradation of biphenyl and 4-chlorobiphenyl were cloned using pBluescript SK(+) from the chromosomal DNA of Pseudomonas sp. P20 to construct pCK1 and pCK102, harbouring pcbABCD and pcbCD, respectively. The 2, 3-DHBP dioxygenase gene, pcbC, was cloned again from pCK102 by using pKT230 which is known as a shuttle vector and pKK1 hybrid plasmid was constructed. The E. coli KK1 transformant obtained by transforming the pKK1 into E. coli XL1-Blue showed 2, 3-DHBP dioxygenase activity. The specific 2, 3-DHBP dioxygenase activity of E. coli KK1 was similar to that of the E. coli CK102, but much higher than those of the natural isolates, Pseudomonas sp. DJ-12 and Pseudomonas sp. P20.
Catechol 1,2-dioxygenase was purified from cells of R. rhodochrous N75 grown at the expense of benzoate and p-toluate as the sole sources of carbon. A single catechol 1,2-dioxygenase was found to be induced with either growth substrate. The enzyme has an estimated $M_r$ of 71,000 consisting of two identical subunits. Catechol 1,2-dioxygenase from R. rhodochrous N75 exhibits some unusual properties including: broad substrate specificity, extradiol cleavage activity with 4-methylcatechol and low $K_m$ values for halocatechols, suggesting that this enzyme is distinct from other known catechol and chlorocatechol 1,2-dioxygenases.
Achromobacter xylosoxidans KF701 and Pseudomonas putida (NAH7) were significantly different in degradative capability of aromatic compounds including benzoates, biphenyls, and naphthalene. However, both of the bacterial strains can grown on catechol as the sole carbon and energy source. Catechol 2, 3-dioxygenase gene for naphthalene oxidation or biphenyl oxidation was cloned into Escherichia coli HB 701. A E. coli HB 101 clone containing catechol 2, 3-dioxygenase gene from P. putida (NAH7) contains a recombinant plasmid with 3.60kb pBR322 and 6-kb insert DNA. Another E. coli HB101 clone containing catechol 2, 3-dioxygenase gene from A. xylosoxidans KF 701 has a recombinant plasmid with 4.4kb pBR322 and 10-kb insert DNA. Physical maps of the recombinant plasmids were constructed, and catechol 2, 3-dioxygenase gene in the recombinant plasmide was further localized and subcloned int M13. The cloned-catechol 2, 3-dioxygenase game products were identified as yellow bands on nondenaturaing polyacrylamide gel after electrophoresis followed by activity staining with catechol solution.
Jang, Jae Hyun;Kim, Yeji;Roh, Tae Yong;Park, Joong Kon
Korean Chemical Engineering Research
/
v.54
no.5
/
pp.665-670
/
2016
This study deals with the possible degradation of toluene and acetic acid when subjected to cell-free enzyme system from the toluene degrading bacteria Pseudomonas putida and acetic acid degrading bacteria Cupriavidus necator. P. putida produces toluene dioxygenase only under the existence of toluene in culture medium and toluene is degraded to cis-toluene dihydrodiol by this enzyme. C. necator produces acetyl coenzyme A synthetase-1 and converts acetic acid to acetyl CoA in order to synthesize ATP to need for growth or PHA which is biodegradable polymer. In case of toluene degradation, the experiment was conducted before and after production of toluene dioxygenase as this enzyme, produced by P. putida, is an inducible enzyme. Toluene was detected using gas chromatography (GC). Similar amount of toluene was found in control group and before production of toluene dioxygenase (experimental group 1). However, reduction in toluene was detected after the production of toluene dioxygenase (experimental group 2). Acetic acid was detected through application of gas chromatography-mass spectrometer (GC-MS). The results showed the acetic acid peak was not detected in the experimental group to apply cell-free enzyme system. These results show that the cell-free enzyme system obtained from P. putida and C. necator retained the ability to degrade toluene and acetic acid. However, P. putida needs to produce the inducible enzyme before preparation of the cell-free enzyme system.
Park, Hyo-Nam;Kim, Young-Soo;Kim, Young-Chang;Kim, Chi-Kyung;Lim, Jai-Yun
Microbiology and Biotechnology Letters
/
v.24
no.3
/
pp.282-289
/
1996
2,3-DHBP dioxygenase was purified from E. coli CK1092 carrying the pcbC gene, which was cloned from 4-chlorobiphenyl-degrading Pseudomonas sp. P20. Purification of this enzyme was done by acetone precipitation, DEAE- Sephadex A-25 ion exchange chromatography, and preparative gel electrophoresis. The molecular weight of subunit was 34 kDa determined by SDS-PAGE, and that of native enzyme was about 270 kDa. It suggests that this enzyme consist of eight identical subunits. This enzyme was specifically active against only 2,3-DHBP as a substrate with 18 $\mu$M of Km value, but not catechol, 3-methylcatechol, 4-methylcatechol and 4-chlorocatechol. The optimal pH and temperature of 2,3-DHBP dioxygenase were pH 8.0 and 40-60$\circ$C. The enzyme was inhibited by Cu$^{2+}$, Fe$^{2+}$ and Fe$^{3+}$ ions, and was inactivated by H$_{2}$0$_{2}$2 and EDTA. The lower concentrations of some organic solvents such as acetone and ethanol don't stabilize the activity of 2,3-DHBP dioxygenase. The enzyme was completely inactivated by adding the reagents such as N-bromosuccinimide, iodine and p- diazobenzene sulfonic acid.
Kim, Seong-Jae;Shin, Hee-Jung;Park, Yong-Chjun;Kim, Young-Soo;Min, Kyung-Hee;Kim, Young-Chang
BMB Reports
/
v.32
no.4
/
pp.399-404
/
1999
2,3-Dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD), which catalyzes the ring meta-cleavage of 2,3-dihydroxybiphenyl, is encoded by the phnQ gene of biphenyl- and phenanthrene-degrading Pseudomonas sp. strain DJ77. We determined the nucleotide sequence of a DNA fragment of 1497 base pairs which included the phnQ gene. The fragment lncluded an open reading frame of 903 base pairs to accommodate the enzyme. The predicted amino acid sequence of the enzyme subunit consisted of 300 residues. In front of the gene, a sequence resembling an E. coli promoter was identified, which led to constitutive expression of the cloned gene in E. coli. The deduced amino acid sequence of the PhnQ enzyme exhibited 85.6% identity with that of the corresponding enzyme in Sphingomonas yanoikuyae Q1 (formerly S. paucimobilis Q1) and 22.1% identity with that of catechol 1,2,3-dioxygenase from the same DJ77 strain. PhnQ showed broader substrate preference than previously-cloned PhnE, catechol 2,3-dioxygenase. Ten amino acid residues, considered to be important for the role of extradiol dioxygenases, were conserved.
We cloned the 5~kb Xlwl fragment containing gene responsible for degrad"tion of phenanthrene using pBLUES~ CRIPT SK( +) vector and E. coli XLI-Blue strain from the genomic library of Pseudomonas sp. 0177 and this recombinant plasmid was named pUPX5. The strain containing pUPX5 could produce a yellow meta-cleavage product using 2.3-dihydroxybiphenyl as a substrate. This strain have a higher activity toward 2,3-dihydroxybiphenyl than catechol. We sub cloned and localized the gene encoding 2.3-dihydroxybiphenyl-1.2-dioxygenase. which is designated as phn$\Omega$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.