• Title/Summary/Keyword: Dinoflagellates,

Search Result 274, Processing Time 0.033 seconds

Benthic dinoflagellates in Korean waters

  • Lim, An Suk;Jeong, Hae Jin
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.91-109
    • /
    • 2021
  • The occurrence of benthic dinoflagellates, many of which are known to be toxic, is a critical concern for scientists, government officers, and people in the aquaculture, dining, and tourism industries. The interest in these dinoflagellates in countries with temperate climate is increasing because tropical or subtropical species introduced into temperate waters by currents are able to survive the winter season in the new environment owing to global warming. Recently, several species from the benthic dinoflagellate genera Amphidinium, Coolia, Ostreopsis, Gambierdiscus, and Prorocentrum have been reported in the waters of the South and East Sea of Korea. The advent of the benthic dinoflagellates in Korean waters is especially important because raw or slightly cooked seaweeds, which may harbor these benthic dinoflagellates, as well as raw fish, which can be potentially intoxicated by phytotoxins produced by some of these benthic dinoflagellates, are part of the daily Korean diet. The recent increase in temperature of Korean coastal waters has allowed for the expansion of benthic dinoflagellate species into these regions. In the present study, we reviewed the species, distribution, and toxicity of the benthic dinoflagellates that have been reported in Korean waters. We also provided an insight into the ecological and socio-economic importance of the occurrence of benthic dinoflagellates in Korean waters.

Effects of Red-Tide and Toxic Dinoflagellates on the Survival and Growth of Larvae of the Mussel, Mytilus galloprovincialis

  • Lee, Chang-Hoon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.373-374
    • /
    • 2003
  • There were many studies on the effects of red tide dinoflagellates on shellfish populations (Nielsen and Stromgren, 1991; Lesser and Shumway, 1993; Luckenbach et al., 1993; Matsuyama et al., 1997; Li et al., 2001). However, these studies mainly focused on the toxic effects of dinoflagellates oui adults or juveniles. Interactions between dinoflagellates and bivalve larvae have not been understood comprehensively yet. (omitted)

  • PDF

Gymnodinioid Dinoflagellates (Gymnodiniales, Dinophyceae) in the Open Pacific Ocean

  • Gomez, Fernando
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.273-286
    • /
    • 2007
  • Records of selected gymnodinioid dinoflagellates from the open waters in the vicinity of the Kuroshio and Oyashio Currents, the Philippine, Celebes, Sulu and South China Seas, western and central equatorial and southeast Pacific Ocean are described and illustrated. The species Gymnodinium fusus Schütt, Gyrodinium falcatum Kofoid et Swezy, G. caudatum Kofoid et Swezy, G. sugashimanii J. Cachon et al. and Pseliodinium vaubanii Sournia are considered to be morphotypes of a single species, that until further studies can establish the correct genus, are named G. falcatum. This study is the first to record individuals of G. falcatum with very long curly extensions. Other gymnodinioid dinoflagellates that showed bifurcated hyposomes may be related to Gyrodinium bifurcatum Kofoid et Swezy or cells of thecate dinoflagellates exuviated from their thecae. Some specimens showed a rigid cover, although no discernible thecal plates. In this group, the most common species was Ptychodiscus noctiluca Stein and, for the first time, a micrograph of a tentative specimen of the genus Berghiella Kofoid et Michener is reported. The validity of the genera Berghiella and Balechina Loeblich Jr. et Loeblich III with thick cell covers is discussed. Several species with apical extensions, other unknown taxa with distinctive shapes, and colonial forms are illustrated. The diversity of gymnodinioid dinoflagellates is underinvestigated in the open ocean.

Morphological Features of Marine Dinoflagellates from Jangmok Harbour in Jinhae Bay, Korea: A Case of 30 Species in the Orders Prorocentrales, Dinophysiales, Gonyaulacales and Gymnodiniales

  • Shin, Hyeon Ho;Kim, Eun Song;Li, Zhun;Youn, Joo Yeon;Jeon, Seul Gi;Oh, Seok Jin
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.141-150
    • /
    • 2016
  • Most previous studies on dinoflagellates in Korean coastal areas were conducted without morphological descriptions and illustrations of the observed dinoflagellates. This indicates that the species and diversity of dinoflagellates may have been respectively misidentified and underestimated in the past, probably due to cell shrinkage, distortion and loss caused by sample fixation. This study provides information on the morphological observations of four dinoflagellate orders (Prorocentrales, Dinophysiales, Gonyaulacales and Gymnodiniales) from Jangmok Harbour in Jinhae Bay, Korea. The unfixed samples were collected weekly from December 2013 to February 2015. A total of 13 genera and 30 species were identified using light and scanning electron microscopy, although some samples were not clarified at the species level. Harmful dinoflagellates, Prorocentrum donghaiense, Tripos furca, Alexandrium affine, A. fundyense, Akashiwo sanguinea and Cochlodinium polykrikoides, were identified based on the morphological observations. The results also reflect the occurrence and identification of dinoflagellates that had not been previously recorded in Jangmok Harbour.

Plastid-associated galactolipid composition in eyespot-containing dinoflagellates: a review

  • Graeff, Jori E.;Elkins, Lindsey C.;Leblond, Jeffrey D.
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.73-90
    • /
    • 2021
  • Relative to the large number of photosynthetic dinoflagellate species, only a select few possess proteinaceous, carotenoid-rich eyespots which have been demonstrated in other algae to act in phototactic responses. The proteins comprising the different categories of dinoflagellate eyespots are positioned in or near the peridinin-containing photosynthetic plastid membranes which are composed primarily of two galactolipids, mono- and digalactosyldiacylglycerol (MGDG and DGDG). Within eyespot-containing dinoflagellates, this arrangement occurs mostly in those with secondary plastids, although some dinoflagellates with tertiary plastids of diatom origin are known to possess eyespots. We here provide an examination of the MGDG and DGDG composition of eyespot-containing dinoflagellates with secondary, peridinin-containing plastids and tertiary plastids of diatom origin to address the fundamental question of whether eyespots and their component proteins and carotenoids are associated with alterations in galactolipid composition when compared to eyespot-lacking photosynthetic dinoflagellates. This is an important question because the dinoflagellate eyespot-plastid membrane system can be considered a more complicated and evolved state of plastid development. Included in this examination are data on the previously unexamined peridinin- and type A eyespot-containing dinoflagellate Margalefidinium polykrikoides, and the type D eyespot-containing, aberrant plastid "dinotom" Durinskia baltica. In addition, we have reviewed the galactolipid composition of algae from the Chlorophyceae, Cryptophyceae, and Euglenophyceae as a comparison to determine if algal classes apart from the Dinophyceae contain altered galactolipids in association with eyespots. We conclude that the presence of an eyespot in dinoflagellates and other algae is not associated with noticeable changes in galactolipid composition.

Amino acids profiles of six dinoflagellate species belonging to diverse families: possible use as animal feeds in aquaculture

  • Lim, An Suk;Jeong, Hae Jin;Kim, So Jin;Ok, Jin Hee
    • ALGAE
    • /
    • v.33 no.3
    • /
    • pp.279-290
    • /
    • 2018
  • Microalgae have been utilized in diverse industries including aquaculture. Among the microalgae, dinoflagellates are known to have various bioactive compounds, and thus the interest in their application to industry has increased. In order to test their potential as food materials for aquaculture animals, the crude protein contents and compositions of amino acids of six dinoflagellates Heterocapsa rotundata (family Heterocapsaceae), Ansanella granifera (Suessiaceae), Alexandrium andersonii (Ostreopsidaceae), Takayama tasmanica (Brachidiniaceae), Takayama helix, and Gymnodinium smaydae (Gymnodiniaceae) belonging to diverse families were analyzed. The percentage of the amount of the crude protein relative to dry weight of T. tasmanica was the highest (65%) and that of A. andersonii was the lowest (26%). However, the highest percentage of total detected amino acids in crude protein was found in A. andersonii (98.2%). In all six dinoflagellates, glutamic acid was the most dominant amino acid in crude protein. However, the second main amino acid was aspartic acid for H. rotundata, A. granifera, T. helix, and G. smaydae, but were arginine and leucine for A. andersonii and T. tasmanica, respectively. Furthermore, T. tasmanica and T. helix did not have taurine and gamma-aminobutyric acid, whereas the other dinoflagellates possessed them. The percentages of essential amino acid contents of the dinoflagellates met the requirement levels for juvenile shrimps. In addition, the dinoflagellates were not toxic to the brine shrimp Artemia salina. Compared with the other microalgae reported so far, H. rotundata and A. andersonii can be used for arginine-rich diets, T. tasmanica for valine and leucine-rich diets, A. granifera for histidine-rich diets, T. helix for threonine-rich diets, and G. smaydae for lysine-rich diets. Therefore, based on their biochemical composition and toxicity to Artemia, the dinoflagellates could be used as essential amino acid sources for cultivating animals in the aquaculture industry.

Taxonomy of Symbiotic Dinoflagellates Associated with Korean Anthozoans

  • Song, Jun-Im;Lim, Hyo-Suk
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.291-297
    • /
    • 2001
  • Three species of endosymbiotic dinoflagellates, zooxanthellae, are investigated from six host species of anthozoans from Korea. Three unrecorded endosymbionts species are Symbiodinium kawagutii, Symbiodinium microadriaticum, and Symbiodinium sp. Symbiodinium kawagutii Is associated with Alveopora japonica, Anthopleura japonica and Parasicyonis actinostoloides. Symbiodinium microadiraticum is found in Anthopleura kurogane and Parasicyonis sp. Unlike the former two symbionts, Symbiodinium sp. is associated with Anthopleura midori.

  • PDF

New Record of Dinoflagellates around Jeju Island

  • Kim, Hyeung-Sin;Kim, Seung-Hyun;Jung, Min-Min;Lee, Joon-Baek
    • Journal of Ecology and Environment
    • /
    • v.36 no.4
    • /
    • pp.273-291
    • /
    • 2013
  • Dinoflagellate species composition has changed around Jeju Island as well as in Korean waters due to global warming and climate changes. An investigation was conducted to monitor changes in planktonic dinoflagellates around Jeju Island from June 2006 to September 2009. A total of 86 species belonging to 14 families and 15 genera were identified, of which 34 species were newly recorded in Korean waters. Among the newly recorded species, >20 were confirmed as tropical species. Thus, the occurrence of such tropical dinoflagellates could be an indicator to monitor of environmental changes including global warming around Jeju Island and in Korean waters.

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

Phytoplankton Studies in Korean Waters. IV. Phytoplankton in the Adjacent Seas of Korea (한국해역의 식물플랭크톤의 연구. IV. 동해, 남해 및 서해해역의 식물플랭크톤)

  • Choe, Sang
    • 한국해양학회지
    • /
    • v.4 no.2
    • /
    • pp.49-67
    • /
    • 1969
  • A quantitative phytoplankton study in Korean waters was commenced in 1964 as a part of the primary production studies of Koreans seas, and it was continued with the cruises for Cooperative Studies of the Kuroshio(C.S.K) in 1965-1968. Phytoplankton samples were taken by dipping about 500ml of sea water from the surface, and then fixed by ading neutralized formlin. This report deals with the results obtained during 1965-1966. I examined a total of 298 samples of surface phytoplankton collected in the wate neighboring Korea in the above-mentioned period, and detected 147 species of diatoms and 22 species of dinoflagellates. Among them 123 species of diatoms and 18 species of dinoflagellates occured in the Japan Sea region, 133 species of diatoms and 11 species of dinoflagellates occured in the Korea Strait region, and 49 species of diatom and 8 species of dinoflagellates occured in the Yellow Sea region. And thd phytoplankton standing crops are dept in a fair abundance in the Japan Sea area all the year round, and are poor in the Yellow Sea area. The seas surrounding Korea are divided into seven regions by the planktological characteristics; northern and southern parts of the Japan Sea, eastern, western and southern parts of the Korea Strait, southern and northern parts of the Yellow Sea. The representative of the phytoplankton community in each sea region is generalized as follows; northern part of the Japan Sea is dominant with Chaetoceros group, southern part of the Japan Sea is dominant with Chaetoceros group and Skeletonema costaum, eastern part of the Korea Strait is dominant with Chaetoceros group and Pleurosigma sp., southern part of the Korea Strait is dominant with Chaetoceros group and Rizosolenia group, western part of the Korea Strait is most poor in phytoplankton, southern part of the Yellow Sea is dominant with Pleurosigma sp. and Coscinodiscus group, and northern part of the Yellow Sea is dominant with Pleurosigma sp. and Eucampia zoodiacus. Chaetoceros curvisetus, Leptocylindrus danicus, Pleurosigma normanii, Thalassionema nitzschioides, Thalassiothrix flauenfeldii appeared all the year round in the neighboring sea of Korea. There were 24 species (18 species of diatoms and 6 species of dinoflagellates) of the pecuriar phytoplankton in the Japan Sea, 27 species (25 species of diatoms and 2 species of dinoflagellates) of that in the Korea, and 7 species (5 species of diatoms and 2 species of dinoflagellates) of that in the Yellow Sea, respectively.

  • PDF