Browse > Article
http://dx.doi.org/10.4490/algae.2021.36.5.25

Plastid-associated galactolipid composition in eyespot-containing dinoflagellates: a review  

Graeff, Jori E. (Department of Biology, Middle Tennessee State University)
Elkins, Lindsey C. (Department of Biology, Middle Tennessee State University)
Leblond, Jeffrey D. (Department of Biology, Middle Tennessee State University)
Publication Information
ALGAE / v.36, no.2, 2021 , pp. 73-90 More about this Journal
Abstract
Relative to the large number of photosynthetic dinoflagellate species, only a select few possess proteinaceous, carotenoid-rich eyespots which have been demonstrated in other algae to act in phototactic responses. The proteins comprising the different categories of dinoflagellate eyespots are positioned in or near the peridinin-containing photosynthetic plastid membranes which are composed primarily of two galactolipids, mono- and digalactosyldiacylglycerol (MGDG and DGDG). Within eyespot-containing dinoflagellates, this arrangement occurs mostly in those with secondary plastids, although some dinoflagellates with tertiary plastids of diatom origin are known to possess eyespots. We here provide an examination of the MGDG and DGDG composition of eyespot-containing dinoflagellates with secondary, peridinin-containing plastids and tertiary plastids of diatom origin to address the fundamental question of whether eyespots and their component proteins and carotenoids are associated with alterations in galactolipid composition when compared to eyespot-lacking photosynthetic dinoflagellates. This is an important question because the dinoflagellate eyespot-plastid membrane system can be considered a more complicated and evolved state of plastid development. Included in this examination are data on the previously unexamined peridinin- and type A eyespot-containing dinoflagellate Margalefidinium polykrikoides, and the type D eyespot-containing, aberrant plastid "dinotom" Durinskia baltica. In addition, we have reviewed the galactolipid composition of algae from the Chlorophyceae, Cryptophyceae, and Euglenophyceae as a comparison to determine if algal classes apart from the Dinophyceae contain altered galactolipids in association with eyespots. We conclude that the presence of an eyespot in dinoflagellates and other algae is not associated with noticeable changes in galactolipid composition.
Keywords
algae; digalactosyldiacylglycerol; dinoflagellate; eyespot; fatty acid; lipid; monogalactosyldiacylglycerol;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Moestrup, O. & Daugbjerg, N. 2007. On dinoflagellate phylogeny and classification. In Brodie, J. & Lewis, J. (Eds.) Unraveling the Algae: the Past, Present, and Future of Algal Systematics. CRC Press, Boca Raton, FL, pp. 215-230.
2 Moestrup, O., Lindberg, K. & Daugbjerg, N. 2009. Studies on woloszynskioid dinoflagellates IV: the genus Biecheleria gen. nov. Phycol. Res. 57:203-220.   DOI
3 Murphy, D. J. 1982. The importance of non-planar bilayer regions in photosynthetic membranes and their stabilisation by galactolipids. FEBS Lett. 150:19-26.   DOI
4 Nakamura, K., Bray, D. F., Costerton, J. W. & Wagenaar, E. B. 1973. The eyespot of Chlamydomonas eugametos: a freeze-etch study. Can. J. Bot. 51:817-819.   DOI
5 Niyogi, K. K. 1999. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:333-359.   DOI
6 Pandeirada, M. S., Craveiro, S. C., Daugbjerg, N., Moestrup, O. & Calado, A. J. 2021. Fine-structural characterization and phylogeny of Sphaerodinium (Suessiales, Dinophyceae), with the description of an unusual type of freshwater dinoflagellate cyst. Eur. J. Protistol. 78:125770.   DOI
7 Waller, R. F. & Koreny, L. 2017. Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Adv. Bot. Res. 84:105-143.   DOI
8 Sakurai, I., Mizusawa, N., Wada, H. & Sato, N. 2007. Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiol. 145:1361-1370.   DOI
9 Raho, N., Fraga, S., Abad, J. P. & Marin, I. 2018. Biecheleria tirezensis sp. nov. (Dinophyceae, Suessiales), a new halotolerant dinoflagellate species isolated from the athalassohaline Tirez natural pond in Spain. Eur. J. Phycol. 53:99-113.   DOI
10 Ratha, S. K., Jena, M. & Adhikary, S. P. 2006. Euglenophytes from Orissa State, east coast of India. Algae 21:61-73.   DOI
11 Schaller, K., David, R. & Uhl, R. 1997. How Chlamydomonas keeps track of the light once it has reached the right phototactic orientation. Biophys. J. 73:1562-1572.   DOI
12 Pienaar, R. N., Sakai, H. & Horiguchi, T. 2007. Description of a new dinoflagellate with a diatom endosymbiont, Durinskia capensis sp. nov. (Peridiniales, Dinophyceae) from South Africa. J. Plant Res. 120:247.   DOI
13 Mitani, E., Nakayama, F., Matsuwaki, I., Ichi, I., Kawabata, A., Kawachi, M. & Kato, M. 2017. Fatty acid composition profiles of 235 strains of three microalgal divisions within the NIES Microbial Culture Collection. Microb. Res. Syst. 33:19-29.
14 Schaller, K. & Uhl, R. 1997. A microspectrophotometric study of the shielding properties of eyespot and cell body in Chlamydomonas. Biophys. J. 73:1573-1578.   DOI
15 Taipale, S., Strandberg, U., Peltomaa, E., Galloway, A. W. E., Ojala, A. & Brett, M. T. 2013. Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat. Microb. Ecol. 71:165-178.   DOI
16 Takahashi, K., Benico, G., Lum, W. M. & Iwataki, M. 2019. Gertia stigmatica gen. et sp. nov. (Kareniaceae, Dinophyceae), a new marine unarmored dinoflagellate possessing the peridinin-type chloroplast with an eyespot. Protist 170:125680.   DOI
17 Takahashi, K., Moestrup, O., Jordan, R. W. & Iwataki, M. 2015. Two new freshwater woloszynskioids Asulcocephalium miricentonis gen. et sp. nov. and Leiocephalium pseudosanguineum gen. et sp. nov. (Suessiaceae, Dinophyceae) lacking an apical furrow apparatus. Protist 166:638-658.   DOI
18 Anesi, A., Obertegger, U., Hansen, G., Sukenik, A., Flaim, G. & Guella, G. 2016. Comparative analysis of membrane lipids in psychrophilic and mesophilic freshwater dinoflagellates. Front. Plant Sci. 7:524.   DOI
19 Dodge, J. D. 1984. The functional and phylogenetic significance of dinoflagellate eyespots. Biosystems 16:259-267.   DOI
20 Allen, J. F. 2002. Photosynthesis of ATP: electrons, proton pumps, rotors, and poise. Cell 110:273-276.   DOI
21 Beck, C. & Uhl, R. 1994. On the localization of voltage-sensitive calcium channels in the flagella of Chlamydomonas reinhardtii. J. Cell Biol. 125:1119-1125.   DOI
22 Berthold, P., Tsunoda, S. P., Ernst, O. P., Mages, W., Gradmann, D. & Hegemann, P. 2008. Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665-1677.   DOI
23 Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A. & Cohen, Z. 2002a. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497-503.   DOI
24 Yamada, N., Sym, S. D. & Horiguchi, T. 2017. Identification of highly divergent diatom-derived chloroplasts in dinoflagellates, including a description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae). Mol. Biol. Evol. 34:1335-1351.   DOI
25 Craveiro, S. C., Calado, A. J., Daugbjerg, N., Hansen, G. & Moestrup, O. 2011. Ultrastructure and LSU rDNAbased phylogeny of Peridinium lomnickii and description of Chimonodinium gen. nov. (Dinophyceae). Protist 162:590-615.   DOI
26 Cho, S. H. & Thompson, G. A. Jr. 1987. On the metabolic relationships between monogalactosyldiacylglycerol and digalactosyldiacylglycerol molecular species in Dunaliella salina. J. Biol. Chem. 262:7586-7593.   DOI
27 Chuecas, L. & Riley, J. P. 1969. Component fatty acids of the total lipids of some marine phytoplankton. J. Mar. Biol. Assoc. U. K. 49:97-116.   DOI
28 Craig, E. M., Dahmen, J. L. & Leblond, J. D. 2015. Temperature modulation and the presence of C20 fatty acids in mono- and digalactosyldiacylglycerol of Euglena gracilis and Lepocinclis acus: a modern interpretation of euglenid galactolipids using positive-ion electrospray ionization/mass spectrometry. Phycol. Res. 63:231-238.   DOI
29 Gray, C. G., Lasiter, A. D., Li, C. & Leblond, J. D. 2009b. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. I. Peridinin-containing taxa. Eur. J. Phycol. 44:191-197.   DOI
30 Gray, C. G., Lasiter, A. D. & Leblond, J. D. 2009a. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. III. Four cold-adapted, peridinin-containing taxa and the presence of trigalactosyldiacylglycerol as an additional glycolipid. Eur. J. Phycol. 44:439-445.   DOI
31 Deme, B., Cataye, C., Block, M. A., Marechal, E. & Jouhet, J. 2014. Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J. 28:3373-3383.   DOI
32 Craveiro, S. C., Calado, A. J., Daugbjerg, N. & Moestrup, O. 2009. Ultrastructure and LSU rDNA-based revision of Peridinium group Palatinum (Dinophyceae) with the description of Palatinus gen. nov. J. Phycol. 45:1175-1194.   DOI
33 Craveiro, S. C., Moestrup, O., Daugbjerg, N. & Calado, A. J. 2010. Ultrastructure and large subunit rDNA-based phylogeny of Sphaerodinium cracoviense, an unusual freshwater dinoflagellate with a novel type of eyespot. J. Eukaryot. Microbiol. 57:568-585.   DOI
34 Della Greca, M., Monaco, P., Pinto, G., Pollio, A. & Previtera, L. 1989. Lipid composition of the acidophilic alga Dunaliella acidophila. II. Molecular species of galactolipids. Biochim. Biophys. Acta Lipids Lipid Metabol. 1004:271-273.   DOI
35 Iwataki, M., Hansen, G., Moestrup, O. & Matsuoka, K. 2010. Ultrastructure of the harmful unarmored dinoflagellate Cochlodinium polykrikoides (Dinophyceae) with reference to the apical groove and flagellar apparatus. J. Eukaryot. Microbiol. 57:308-321.   DOI
36 Greuet, C. 1967. Organisation ultrastructurale du tentacule d'Erythropsis pavillardi Kofoid et Swezy Peridinien Warnowiidae Lindemann. Protistologica 3:335-345.
37 Guiry, M. D. & Guiry, G. M. 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org. Accessed Dec 20, 2020.
38 Hehenberger, E., Imanian, B., Burki, F. & Keeling, P. J. 2014. Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts. Genome Biol. Evol. 6:2321-2334.   DOI
39 Loll, B., Kern, J., Saenger, W., Zouni, A. & Biesiadka, J. 2005. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438:1040-1044.   DOI
40 Holzl, G., Witt, S., Gaude, N., Melzer, M., Schottler, M. A. & Dormann, P. 2009. The role of diglycosyl lipids in photosynthesis and membrane lipid homeostasis in Arabidopsis. Plant Physiol. 150:1147-1159.   DOI
41 Iwataki, M., Kawami, H. & Matsuoka, K. 2007. Cochlodinium fulvescens sp. nov. (Gymnodiniales, Dinophyceae), a new chain-forming unarmored dinoflagellate from Asian coasts. Phycol. Res. 55:231-239.   DOI
42 Janero, D. R. & Barrnett, R. 1981. Cellular and thylakoidmembrane glycolipids of Chlamydomonas reinhardtii 137+. J. Lipid Res. 22:1119-1125.   DOI
43 Luo, Z., Mertens, K. N., Nezan, E., Gu, L., Pospelova, V., Thoha, H. & Gu, H. 2019. Morphology, ultrastructure and molecular phylogeny of cyst-producing Caladoa arcachonensis gen. et sp. nov. (Peridiniales, Dinophyceae) from France and Indonesia. Eur. J. Phycol. 54:235-248.
44 Boudiere, L., Michaud, M., Petroutsos, D., Rebeille, F., Falconet, D., Bastien, O., Roy, S., Finazzi, G., Rolland, N., Jouhet, J., Block, M. A. & Marechal, E. 2014. Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim. Biophys. Acta Bioenerg. 1837:470-480.   DOI
45 Lucas, I. A. N. 1982. Observations on the fine structure of the Cryptophyceae. II. The eyespot. Br. Phycol. J. 17:13-19.   DOI
46 Chesnick, J. M., Kooistra, W. H., Wellbrock, U. & Medlin, L. K. 1997. Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J. Eukaryot. Microbiol. 44:314-320.   DOI
47 Craveiro, S. C., Daugbjerg, N., Moestrup, O. & Calado, A. J. 2015. Fine-structural characterization and phylogeny of Peridinium polonicum, type species of the recently described genus Naiadinium (Dinophyceae). Eur. J. Protistol. 51:259-279.   DOI
48 Dodge, J. D. 1974. Fine structure and phylogeny in the algae. Sci. Prog. 61:257-274.
49 Bigogno, C., Khozin-Goldberg, I. & Cohen, Z. 2002b. Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta). Phytochemistry 60:135-143.   DOI
50 Lum, W. M., Takahashi, K., Benico, G., Takayama, H. & Iwataki, M. 2019. Dactylodinium arachnoides sp. nov. (Borghiellaceae, Dinophyceae): a new marine dinoflagellate with a loop-shaped apical structure complex and tubular membranous extrusomes. Phycologia 58:661-674.   DOI
51 Makshakova, O., Breton, C. & Perez, S. 2020. Unraveling the complex enzymatic machinery making a key galactolipid in chloroplast membrane: a multiscale computer simulation. Sci. Rep. 10:13514.   DOI
52 Takahashi, K., Sarai, C. & Iwataki, M. 2014. Morphology of two marine woloszynskioid dinoflagellates, Biecheleria brevisulcata sp. nov. and Biecheleriopsis adriatica (Suessiaceae, Dinophyceae), from Japanese coasts. Phycologia 53:52-65.   DOI
53 Tamura, M., Takano, Y. & Horiguchi, T. 2009. Discovery of a novel type of body scale in the marine dinoflagellate, Amphidinium cupulatisquama sp. nov. (Dinophyceae). Phycol. Res. 57:304-312.   DOI
54 Gao, J., Wang, H., Yuan, Q. & Feng, Y. 2018. Structure and function of the photosystem supercomplexes. Front. Plant Sci. 9:357.   DOI
55 Keeling, P. J. 2010. The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365:729-748.   DOI
56 Gavelis, G. S., Hayakawa, S., White, R. A. 3rd., Gojobori, T., Suttle, C. A., Keeling, P. J. & Leander, B. S. 2015. Eye-like ocelloids are built from different endosymbiotically acquired components. Nature 523:204-207.   DOI
57 Harz, H. & Hegemann, P. 1991. Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351:489-491.   DOI
58 Imanian, B., Pombert, J. -F. & Keeling, P. J. 2010. The complete plastid genomes of the two 'dinotoms' Durinskia baltica and Kryptoperidinium foliaceum. PLoS ONE 5:e10711.   DOI
59 Dodson, V. J., Dahmen, J. L., Mouget, J. -L. & Leblond, J. D. 2013. Mono- and digalactosyldiacylglycerol composition of the marennine-producing diatom, Haslea ostrearia: comparison to a selection of pennate and centric diatoms. Phycol. Res. 61:199-207.   DOI
60 Dorrell, R. G. & Howe, C. J. 2015. Integration of plastids with their hosts: lessons learned from dinoflagellates. Proc. Natl. Acad. Sci. U. S. A. 112:10247-10254.   DOI
61 Dunstan, G. A., Volkman, J. K., Barrett, S. M., Leroi, J. -M. & Jeffrey, S. W. 1993. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35:155-161.   DOI
62 Erickson, E., Wakao, S. & Niyogi, K. K. 2015. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 82:449-465.   DOI
63 Dormann, P., Hoffmann-Benning, S., Balbo, I. & Benning, C. 1995. Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7:1801-1810.   DOI
64 Foster, K. W. & Smyth, R. D. 1980. Light Antennas in phototactic algae. Microbiol. Rev. 44:572-630.   DOI
65 Fried, A., Tietz, A., Ben-Amotz, A. & Eichenberger, W. 1982. Lipid composition of the halotolerant alga, Dunaliella bardawil. Biochim. Biophys. Acta Lipids Lipid Metabol. 713:419-426.   DOI
66 Gagat, P., Bodyl, A., Mackiewicz, P. & Stiller, J. W. 2014. Tertiary plastid endosymbioses in dinoflagellates. In Loffelhardt, W. (Ed.) Endosymbiosis. Springer, Vienna, pp. 233-290.
67 Gaines, G. & Elbrachter M. 1987. Heterotrophic nutrition. In Taylor, F. J. R. (Ed.) The Biology of Dinoflagellates. Blackwell, Oxford, pp. 224-267.
68 Giroud, C., Gerber, A. & Eichenberger, W. 1988. Lipids of Chlamydomonas reinhardtii: analysis of molecular species and intracellular site(s) of biosynthesis. Plant Cell Physiol. 29:587-595.
69 Ueki, N., Ide, T., Mochiji, S., Kobayashi, Y., Tokutsu, R., Ohnishi, N., Yamaguchi, K., Shigenobu, S., Tanaka, K., Minagawa, J., Hisabori, T., Hirono, M. & Wakabayashi, K. 2016. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 113:5299-5304.   DOI
70 Dawut, M., Sym, S. D. & Horiguchi, T. 2018. Re-investigation of Gymnodinium natalense (Dinophyceae), a tidal pool dinoflagellate from South Africa and the proposal of a new combination Ansanella natalensis. Phycol. Res. 66:300-309.   DOI
71 Walne, P. L. & Arnott, H. J. 1967. The comparative ultrastructure and possible function of eyespots: Euglena granulata and Chlamydomonas eugametos. Planta 77:325-353.   DOI
72 Wu, W., Ping, W., Wu, H., Li, M., Gu, D. & Xu, Y. 2013. Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b6f-mediated intersystem electron transport process and affects the photostability of the photosystem II apparatus. Biochim. Biophys. Acta Bioenerg. 1827:709-722.   DOI
73 Yokouchi, K., Onuma, R. & Horiguchi, T. 2018. Ultrastructure and phylogeny of a new species of mixotrophic dinoflagellate, Paragymnodinium stigmaticum sp. nov. (Gymnodiniales, Dinophyceae). Phycologia 57:539-554.   DOI
74 Johansson, O. N., Topel, M., Egardt, J., Pinder, M. I. M., Andersson, M. X., Godhe, A. & Clarke, A. K. 2019. Phenomics reveals a novel putative chloroplast fatty acid transporter in the marine diatom Skeletonema marinoi involved in temperature acclimation. Sci. Rep. 9:15143.   DOI
75 Jang, S. H., Jeong, H. J., Moestrup, O., Kang, N. S., Lee, S. Y., Lee, K. H. & Seong, K. A. 2017. Yihiella yeosuensis gen. et sp. nov. (Suessiaceae, Dinophyceae), a novel dinoflagellate isolated from the coastal waters of Korea. J. Phycol. 53:131-145.   DOI
76 Jarvis, P., Dormann, P., Peto, C. A., Lutes, J., Benning, C. & Chory, J. 2000. Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc. Nat. Acad. Sci. U. S. A. 97:8175-8179.   DOI
77 Jeong, H. J., Jang, S. H., Moestrup, O., Kang, N. S., Lee, S. Y., Potvin, E. & Noh, J. H. 2014. Ansanella granifera gen. et sp. nov. (Dinophyceae), a new dinoflagellate from the coastal waters of Korea. Algae 29:75-99.   DOI
78 Kato, S., Ozasa, K., Maeda, M., Tanno, Y., Tamaki, S., Higuchi-Takeuchi, M., Numata, K., Kodama, Y., Sato, M., Toyooka, K. & Shinomura, T. 2020. Carotenoids in the eyespot apparatus are required for triggering phototaxis in Euglena gracilis. Plant J. 101:1091-1102.   DOI
79 Kawai, H. & Inouye, I. 1989. Flagellar autofluorescence in forty-four chlorophyll c-containing algae. Phycologia 28:222-227.   DOI
80 Kreimer, G. 1994. Cell biology of phototaxis in flagellate algae. Int. Rev. Cytol. 148:229-310.   DOI
81 Kreimer, G. 1999. Reflective properties of different eyespot types in dinoflagellates. Protist 150:311-323.   DOI
82 McLachlan, J. L., Curtis, J. M., Boutilier, K., Keusgen, M. & Seguel, M. R. 1999. Tetreutreptia pomquetensis (Euglenophyta), a psychrophilic species: growth and fatty acid composition. J. Phycol. 35:280-286.   DOI
83 Tomas, R. N. & Cox, E. R. 1973. Observations on the symbiosis of Peridinium balticum and its intracellular alga. I. Ultrastructure. J. Phycol. 9:304-323.   DOI
84 Kremp, A., Elbrachter, M., Schweikert, M., Wolny, J. L. & Gottschling, M. 2005. Woloszynskia halophila (Biecheler) comb. nov.: a bloom-forming cold-water dinoflagellate co-occurring with Scrippsiella hangoei (Dinophyceae) in the Baltic Sea. J. Phycol. 41:629-642.   DOI
85 Kumari, P., Kumar, M., Reddy, C. R. K. & Jha, B. 2013. Algal lipids, fatty acids and sterols. In Dominguez, H. (Ed.) Functional Ingredients from Algae for Foods and Nutraceuticals. Woodhead Publishing, Cambridge, pp. 87-134.
86 LaJeunesse, T. C. 2017. Validation and description of Symbiodinium microadriaticum, the type species of Symbiodinium (Dinophyta). J. Phycol. 53:1109-1114.   DOI
87 Lang, I., Hodac, L., Friedl, T. & Feussner, I. 2011. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 11:124.   DOI
88 Leblond, J. D., Dodson, J. & Dahmen, J. I. 2013. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. VII. Evidence against galactolipid production and plastid presence in the heterotrophic, basal dinoflagellate, Oxyrrhis marina. Eur. J. Phycol. 48:309-317.   DOI
89 Leblond, J. D. & Lasiter, A. D. 2009. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. II. Lepidodinium chlorophorum, Karenia brevis, and Kryptoperidinium foliaceum, three dinoflagellates with aberrant plastids. Eur. J. Phycol. 44:199-205.   DOI
90 Lindberg, K., Moestrup, O. & Daugbjerg, N. 2005. Studies on woloszynskioid dinoflagellates I: Woloszynskia coronata re-examined using light and electron microscopy and partial LSU rDNA sequences, with description of Tovellia gen. nov. and Jadwigia gen. nov. (Tovelliaceae fam. nov.). Phycologia 44:416-440.   DOI
91 McLachlan, J. L., Seguel, M. R. & Fritz, L. 1994. Tetreutreptia pomquetensis gen. et sp. nov. (Euglenophyceae): a quadriflagellate, phototrophic marine euglenoid. J. Phycol. 30:538-544.   DOI
92 Siano, R., Montresor, M., Probert, I., Not, F. & de Vargas, C. 2010. Pelagodinium gen. nov. and P. beii comb. nov., a dinoflagellate symbiont of planktonic foraminifera. Protist 161:385-399.   DOI
93 Hoppenrath, M., Bachvaroff, T. R., Handy, S. M., Delwiche, C. F. & Leander, B. S. 2009. Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences. BMC Evol. Biol. 9:116.   DOI
94 Melkonian, M. & Robenek, H. 1984. The eyespot apparatus of flagellated green algae: a critical review. Prog. Phycol. Res. 3:193-268.
95 Kretschmann, J., Calasan, A. Z. & Gottschling, M. 2018. Molecular phylogenetics of dinophytes harboring diatoms as endosymbionts (Kryptoperidiniaceae, Peridiniales), with evolutionary interpretations and a focus on the identity of Durinskia oculata from Prague. Mol. Phylogenet. Evol. 118:392-402.   DOI
96 Leblond, J. D., McDaniel, S. L., Lowrie, S. D., Khadka, M. & Dahmen, J. L. 2019. Mono-and digalactosyldiacylglycerol composition of dinoflagellates. VIII. Temperature effects and a perspective on the curious case of Karenia mikimotoi as a producer of the unusual, 'green algal' fatty acid hexadecatetraenoic acid [16:4(n-3)]. Eur. J. Phycol. 54:78-90.   DOI
97 Lynch, D. V., Gundersen, R. E. & Thompson, G. A. 1983. Separation of galactolipid molecular species by highperformance liquid chromatography. Plant Physiol. 72:903-905.   DOI
98 Murata, N. & Siegenthaler, P. -A. 1998. Lipids in photosynthesis: an overview. In Siegenthaler, P. -A. & Murata, N. (Eds.) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer Academic, Dordrecht, pp. 1-20.
99 Parke, M. 1949. Studies on marine flagellates. J. Mar. Biol. Assoc. U. K. 28:255-286.   DOI
100 Takahashi, K., Moestrup, O., Wada, M., Ishimatsu, A., Nguyen, V. N., Fukuyo, Y. & Iwataki, M. 2017. Dactylodinium pterobelotum gen. et sp. nov., a new marine woloszynskioid dinoflagellate positioned between the two families Borghiellaceae and Suessiaceae. J. Phycol. 53:1223-1240.   DOI