• Title/Summary/Keyword: Dimethyl carbonate (DMC)

Search Result 35, Processing Time 0.033 seconds

Isothermal Vapor-Liquid Equilibria at 333.15K and Thermodynamic Excess Properties for the Binary System of Methanol+Dimethyl Carbonate (Methanol+Dimethyl Carbonate 혼합계의 333.15 K 등온 기-액 평형과 열역학 과잉 물성)

  • Han, Kyu-Jin;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.387-392
    • /
    • 2005
  • Recently, dimethyl carbonate (DMC) is considered as an alternative of MTBE (methyl tert-butyl ether), additive for non-leaded gasoline with their fast biodegradation rate and low toxicity. DMC is usually synthesized so far by oxidative carbonylation of methanol, and recently developed synthetic process is also started with methanol. Since the phase equilibria of the system, consisted of DMC and methanol or other reaction products on different temperature and pressure is necessary for the optimum separation process design and operation. However the reported phase equilibria and physical properties for DMC mixtures in the Dortmund Data Bank (DDB; thermodynamic property data bank) are quite rare. Besides, infinitely dilute properties are not found. In this work, isothermal vapor-liquid equilibria at 333.15 K for methanol+DMC binary system and mixing properties, excess molar volume and viscosity deviation at 298.15 K are directly measured and correlated. Additionally, infinitely dilute activity coefficient of methanol in the DMC solvent at three different temperatures are measured and compared with predicted values using modified UNIFAC (Dortmund).

Investigating the Reaction Characteristics of Electrolyte Dimethyl Carbonate(DMC) under Thermal Runaway Conditions of Lithium-Ion Battery (리튬이온배터리 열폭주 조건에서 전해질 Dimethyl Carbonate(DMC) 반응 특성 분석)

  • Jeon, Min-Kyu;Lee, Eun-Song;Yoon, Hong-Sik;Keel, Sang-In;Park, Hyun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1275-1284
    • /
    • 2022
  • This study provides an investigating the electrolyte reaction characteristics during thermal runaway of a lithium-ion battery(LIB). Dimethyl carbonate(DMC) is known as the main substance that makes up the electrolyte. The mono-molecular decomposition characteristics of DMC were derived through numerical analysis. Cobalt oxide can release oxygen under high temperature conditions. Also, DMC is converted to CH4, H2, CO, and CO2. Especially, it was found that the decomposition of the DMC begins at a temperature range of 340-350℃, which dramatically increases the internal pressure of the LIB. In the by-products gases, the molar ratio of CO and CO2 changed according to the molecular structure of DMC and temperature conditions. The correlation of the [CO]/[CO2] ratio according to the temperature during thermal runaway was derived, and the characteristics of the reaction temperature could be estimated using the molar ratio as an indicator. In addition, the oxidation and decomposition characteristics of DMC according to the residence time for each temperature were estimated. When DMC is exposed to low temperature for a long time, both oxidation and decomposition may occur. There is possibility of not only increasing the internal pressure of the LIB, but also promoting thermal runaway. In this study, internal environment of LIB was identified and the reaction characteristics between the active materials of the cathode and electrolyte were investigated.

Kinetics and Optimization of Dimethyl Carbonate Synthesis by Transesterification using Design of Experiment

  • Lee, Kilwoo;Yoo, Kye Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.416-420
    • /
    • 2018
  • A comprehensive kinetic study has been conducted on dimethyl carbonate synthesis by transesterification reaction of ethylene carbonate with methanol. An alkali base metal (KOH) was used as catalyst in the synthesis of DMC, and its catalytic ability was investigated in terms of kinetics. The experiment was performed in a batch reactor at atmospheric pressure. The reaction orders, the activation energy and the rate constants were determined for both forward and backward reactions. The reaction order for forward and backward reactions was 0.87 and 2.15, and the activation energy was 12.73 and 29.28 kJ/mol, respectively. Using the general factor analysis in the design of experiments, we analyzed the main effects and interactions according to the MeOH/EC, reaction temperature and KOH concentration. DMC yield with various reaction conditions was presented for all ranges using surface and contour plot. Furthermore, the optimal conditions for DMC yield were determined using response surface method.

Solubility Measurement of Carbon Dioxide in Alkylcarbonates and Triacetin at High Pressure (고압에서 알킬카보네이트와 트리아세틴의 이산화탄소 용해도 측정)

  • Kim, Ji Won;Hong, Won Hi;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.124-129
    • /
    • 2015
  • The constant-volume method was used to determine the solubility of CO2 in various physical absorbents such as DMPEG (dimethyl ether of polyethylene glycol), DEC (diethyl carbonate), DMC (dimethyl carbonate), and TAT (triacetin) in the total pressure range from 5 to 30 bar. The Peng-Robinson equation of state has been used to describe the equilibrium behavior of these mixtures. It was found that the solubility of absorbents was in the of DMPEG250 > TAT > DEC > DMC at the same temperature. Futhermore, the solubiity of blended absorbent of DMPEG250 and DEC is higher than that of DMPEG 250 alone. Therefore, blended absorbent of DMPEG250 and DEC is expected to be an effective and low cost absorbent for physical absorption in precombustion CO2 capture.

Synthesis of Dimethyl Glutarate from Cyclobutanone and Dimethyl Carbonate over Solid Base Catalysts

  • Zhi, Chen;Dudu, Wu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1834-1838
    • /
    • 2012
  • A facile route for the synthesis of dimethyl glutarate (DMG) from cyclobutanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclobutanone (CMCB) was produced from cyclobutanone with DMC in the first step, and then CMCB was further converted to DMG by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclobutanone $via$ the abstraction of a proton in the ${\alpha}$-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DMG.

Synthesis of Dimethyl Carbonate from Methanol and Supercritical Carbon Dioxide over K2CO3/ZrO2 Catalysts (메탄올과 초임계 이산화탄소로부터 K2CO3/ZrO2 촉매를 이용한 디메틸카보네이트 (Dimethyl Carbonate) 합성)

  • Hong, Seung Tae;Park, Hyung Sang;Lim, Jong Sung;Yoo, Ki-Pung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.550-554
    • /
    • 2008
  • The synthesis of dimethyl carbonate (DMC) from methanol and supercritical carbon dioxide over $K_2CO_3/ZrO_2$ catalysts have been studied. The catalysts were prepared by impregnating $ZrO_2$ with an aqueous $K_2CO_3$ solution. The optimum calcination temperature to disperse K species on the $ZrO_2$ surface was found to be 673 K. Monoclinic $ZrO_2$ was not active, as itself, for the DMC production. However, when the $K_2CO_3$ was impregnated on the $ZrO_2$, the catalytic performance was improved. Besides the catalyst, $CH_3I$ was used as a promoter. The $CH_3I$ promoter as well as the $K_2CO_3/ZrO_2$ catalyst was found to take an important role to improve the production of DMC. The optimum quantities for the catalyst and the promoter were estimated. The effect of the catalyst and the promoter for the DMC synthesis from methanol and supercritical carbon dioxide was investigated and the reaction mechanism was proposed.

Effect of Dehydration on DMC Synthesis over Ceria Catalysts (Ceria 촉매상에서 탈수가 DMC 합성에 미치는 영향)

  • You, Jiin;Woo, Je-Min;Kim, Hyunuk;Park, Young Cheol;Park, Jong-Ho;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.196-202
    • /
    • 2016
  • In this study, ceria- based catalysts were prepared for dimethyl carbonate (DMC) synthesis and reaction conditions were evaluated for finding the optimal reaction route. In order to find optimal catalysts for DMC synthesis, calcination temperature and Cu(II) impregnation amount were evaluated. The oxidative carbonylation using methanol, carbon monoxide and oxygen and the direct synthesis using methanol and carbon dioxide were introduced for producing DMC. Following the law of Le Chatelier, the dehydration reaction was applied for enhancing the reactivity (methanol conversion) as removing water during the reaction. 2-cyanopyridine, as a chemical dehydration agent, was used. In the case of the oxidative carbonylation, methanol conversion rate increased from 15.1% to 38.7% and the DMC selectivity increased from 0% to 98.8%. In the case of the direct synthesis, methanol conversion rate increased from 1.0% to 77.8% and the DMC selectivity increased from 41.2% to 100.0%.

A Study on the Efficient Purification Process of Dimethyl carbonate (Dimethyl Carbonate의 효율적인 정제공정 연구)

  • Lee, Sang-Won;Kim, Sung-Il;Chun, Suk-Keun;Park, Du-Goan;Park, Keun-Ho;Lee, Soo;Park, So-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.383-392
    • /
    • 2007
  • This paper is studied on the efficient purification process of dimethyl carbonate (DMC) from the melt layer crystallization combining crystallization process, sweating process and distillation recovery process. Purity and yield of DMC crystal depended mainly on the crystallization temperature, cooling rate, sweating termperature sweating rate. Through the optimization of crystallization and sweating operation, DMC crystal can be upgraded to very high purity over 99.9% and high yield over 85%.

Synthesis of Dimethyl Carbonate by Oxidative Carbonylation of Methanol over Cu Catalysts (구리촉매 상에서의 메탄을 산화카르보닐화에 의한 디메틸카보네이트 합성)

  • Park, Jin-Seok;Suh, Young-Woong;Park, Tae-Jin;Suh, Dong-Jin
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.160-165
    • /
    • 2008
  • The synthesis of dimethyl carbonate (DMC) with Cu catalysts was investigated in a semi-batch high-pressure reactor. DMC was synthesized via the direct oxidative carbonylation of carbon monoxide with oxygen in methanol. The corrosion rate was evaluated fie the weight change for SUS test pieces which had been added into the reactor. In order to reduce the corrosion rate without significantly losing DMC yield, various additives such as amines, olefins, and other metal salts were used. When 1-methylimidazole was used as an additive, 18.6% of DMC yield could be obtained without corrosion. If the amount of 1-methylimidazole was decreased, a high DMC yield (33.2%) could be obtained with a low corrosion rate (0.5%).

  • PDF

Effect of the Additives on Direct Dimethyl Carbonate Synthesis using Methanol and Carbon Dioxide over Ce0.8Zr0.2O2 Catalyst (Ce0.8Zr0.2O2 촉매 상에서 메탄올과 이산화탄소를 이용한 디메틸카보네이트 직접 합성에 대한 첨가제의 영향)

  • Han, Gi Bo;Park, No-Kuk;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.554-559
    • /
    • 2007
  • In order to improve the reactivity for the direct synthesis of dimethyl carbonate (DMC) using methanol and carbon dioxide, the various additives were used in the DMC synthesis using $Ce_{0.8}Zr_{0.2}O_2$ catalyst, and then effect of the additives was investigated. The various additives were molecular sieves 3A and the compounds having the various functional groups such as sulfate, carbonate, nitrate and phosphate. As a result, the compound such as $K_2SO_4$ and $Na_2SO_4$ having sulfate group were the most effective additive among the various additives. When $K_2SO_4$ was used as an additive in the direct synthesis of DMC, the amount of DMC was about 0.91 mmol, which was the highest mount of DMC among using only-$Ce_{0.8}Zr_{0.2}O_2$ catalyst and the various additives.