• Title/Summary/Keyword: Dimensionless Parameters

Search Result 372, Processing Time 0.03 seconds

Unsteady Thermal Stratified Flow and Heat Transfer in a Horizontal Feedwater Pipe (수평급수배관 내에서의 비정상 열성층유동 및 열전달)

  • Yeom, Hak-Gi;Park, Man-Heung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.680-688
    • /
    • 1996
  • In this paper, the unsteady state calculational model is proposed for the thermal stratification analysis in the feedwater line of the PWR plant. By defining dimensionless parameters in the two-dimensional polar coordinate system and applying SIMPLE algorithm, the temperature and flow profiles due to the thermal stratification are obtained. Base on the fact that the most significant condition occurs when the fluid temperature difference between the piping ends reaches as high as 166.deg. C, the present result shows that max. Dimensionless temperature difference of 0.6 (about l00.deg. C) obtained between hot and cold sections of pipe wall at dimensionless time 47.0.

Dimensionless analysis of composite rectangular and circular RC columns

  • Massumi, Ali;Badkoubeh, Alireza
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.327-348
    • /
    • 2015
  • A numerical procedure is presented that provides ultimate curvature and moment domains for composite rectangular and circular cross-sections of reinforced concrete columns with or without an embedded steel section subjected to combined axial loading and biaxial bending. The stress resultants for the concrete and reinforcement bars are calculated using fiber analysis and the stress resultants for the encased structural steel are evaluated using an exact integration of the stress-strain curve over the area of the steel section. A dimensionless formula is proposed that can be used for any section with similar normalized geometric and mechanical parameters. The contribution of each material to the bearing capacity of a section (resistance load and moments) is calculated separately so that the influence of each geometric or mechanical parameter on the bearing capacity can be investigated separately.

Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis

  • Kachapi, Sayyid H. Hashemi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.619-629
    • /
    • 2020
  • In current study, surface/interface effects for pull-in voltage and viscous fluid velocity effects on dimensionless natural frequency (DNF) of fluid-conveying piezoelectric nanosensor (FCPENS) subjected to direct electrostatic voltage DC with nonlinear excitation, harmonic force and also viscoelastic foundation (visco-pasternak medium and structural damping) are investigated using Gurtin-Murdoch surface/interface (GMSIT) theory. For this analysis, Hamilton's principles, the assumed mode method combined with Lagrange-Euler's are used for the governing equations and boundary conditions. The effects of surface/interface parameters of FCPENS such as Lame's constants (λI,S, μI,S), residual stress (τ0I,S), piezoelectric constants (e31psk,e32psk) and mass density (ρI,S) are considered for analysis of dimensionless natural frequency respect to viscous fluid velocity u̅f and pull-in voltage V̅DC.

Hydraulic Characteristics of Two Types of Pyramid-Shaped Artificial Reefs (피라미드형 패조류용 어초의 수리학적 특성)

  • Sohn, Byung-Kyu;Lee, Jeong-Woo;Yi, Byung-Ho;Yoon, Han-Sam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.725-734
    • /
    • 2010
  • This study conducted hydraulic testing to assess the stability of two types of pyramid-shaped artificial reefs (ARs) constructed to promote the growth of shellfish and seaweed. Previous theoretical and hydraulic experimental studies have clearly demonstrated Froude similitude. The results of this study revealed that some dimensionless design parameters affected the stability of both types of artificial reefs under various wave and current field conditions (e.g., surf similarity parameters, water particle velocity, wave pressure). In the fixed bed condition, the dimensionless water particle velocity based on the surf similarity parameter was large (about 0.4), and in the moveable bed condition, the relative water depth based on the dimensionless wave pressure was low (about 0.11). In addition, horizontal wave pressure and uplift pressure varied by relative water depth, demonstrating the tendency for wave pressure to decrease linearly with increased relative depth. These findings indicate that the development of more stable design technology forartificial reefs should be based on long-term data and additional study of sliding due to wave action. The findings also highlight the importance of hydraulic experiments in solving problems that have emerged in the design and construction of artificial reefs.

Second-Order Perturbation Solutions of Liquid Pool Spreading with Instantaneous Spill (순간 누출된 액체의 확산에 관한 2차 섭동 해)

  • Kim, Myung-Bae;Do, Kyu-Hyung;Han, Yong-Shik;Choi, Byung-Il
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.513-518
    • /
    • 2010
  • In the present work the second-order perturbation solutions of the simple physical model for liquid pool spreading is obtained for the case of instantaneous spill. To generalize the solution governing equations are non-dimensionalized, and two dimensionless parameters, dimensionless evaporation rate and aspect ratio of the initial pool, are identified to control the governing equations. The dimensional governing equations have three parameters. The second-order solution improves fairly the first-order solution for the pool volume.

An Asymptotic Analysis on the Inviscid Plane Stagnation-flow Solidification Problem (비점성 평면 정체 유동 응고 문제에 대한 점근적 해석)

  • Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.792-801
    • /
    • 2000
  • The problem of phase change from liquid to solid in the inviscid plane-stagnation flow is theoretically investigated. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The transient solution is dependent on the three dimensionless parameters, but the equilibrium state is determined by one parameter of (temperature ratio/conductivity ratio). The effect of the fluid flow on the growth rate of the solid in the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state. The characteristics of the transient heat transfer at the surface of the solid and the liquid side of the solid-liquid interface for all the dimensionless parameters are elucidated.

Characteristic of Frost Growth on a Cold Cylinder Surface in Cross Flow (직교류 내 원관 표면에서의 서리층 성장 특성)

  • Yang Dong-Keun;Kim Min-Soo;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2006
  • In this paper, frosting experiments were conducted with variations of frosting parameters in order to obtain the correlations of frost properties. As a result, the local thickness, density, and surface temperature of the frost layer were presented. The dimensionless correlations for the frost thickness, frost density, frost surface temperature and heat transfer coefficient were derived as functions of dimensionless frosting parameters by using a dimensional analysis.

홍수시 저수지운영을 위한 시우량 모형 - Hyetograph model for Reservoir operation during Flash flood

  • Lee, Jae-Hyeong;;Jeong, Dong-Guk
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.341-350
    • /
    • 1990
  • Precise run-off forecasting depends on the ability to predict quantitative rainfall intensity. This study suggests a stochastic model for 1 hour order rainfall prediction. The model simultaneously predicts rainfall intensity at all telemetered rain-gauge locations. All model parameters, velocity and direction of storm movement, radial spectrum, dimensionless time distribution of rainfall, are estimated from telemetered and historical data for the basin being predicted. Also the estimated parameters are based on the previous study. The results are the influence of dimensionless time distributions on the prediction and the model on run-off.

  • PDF

Characteristic Evaluation of Optical Design Using Dimensionless Design Parameters (무차원의 설계변수를 이용한 광학설계의 특성 평가)

  • Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • Since optical systems are used for various applications, there are many designs, depending on the purpose and optical specifications, even though they have similar formations. Optical aberrations of a system are affected by both structure and specifications. Thus, it is very difficult to find the special characteristics of an optical design by using aberration analysis only. Regardless of specifications, a new method to investigate the aberration characteristics of an optical design is presented, using dimensionless design parameters. Four kinds of triplet designs with different applications and specifications are analyzed as examples.

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.