Browse > Article
http://dx.doi.org/10.12989/sem.2020.76.5.619

Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis  

Kachapi, Sayyid H. Hashemi (Department of Mechanical Engineering, Babol Noshirvani University of Technology)
Publication Information
Structural Engineering and Mechanics / v.76, no.5, 2020 , pp. 619-629 More about this Journal
Abstract
In current study, surface/interface effects for pull-in voltage and viscous fluid velocity effects on dimensionless natural frequency (DNF) of fluid-conveying piezoelectric nanosensor (FCPENS) subjected to direct electrostatic voltage DC with nonlinear excitation, harmonic force and also viscoelastic foundation (visco-pasternak medium and structural damping) are investigated using Gurtin-Murdoch surface/interface (GMSIT) theory. For this analysis, Hamilton's principles, the assumed mode method combined with Lagrange-Euler's are used for the governing equations and boundary conditions. The effects of surface/interface parameters of FCPENS such as Lame's constants (λI,S, μI,S), residual stress (τ0I,S), piezoelectric constants (e31psk,e32psk) and mass density (ρI,S) are considered for analysis of dimensionless natural frequency respect to viscous fluid velocity u̅f and pull-in voltage V̅DC.
Keywords
pull-in voltage; viscous fluid velocity; dimensionless natural frequency; piezoelectric nanosensor; Gurtin-Murdoch surface/interface theory; electrostatic force, harmonic excitation;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Ghayesh, M. H., Farokhi, H., Amabili, M. (2013a), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006.   DOI
2 Ghayesh, M. H., Amabili, M., Farokhi, H. (2013b), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003.   DOI
3 Ghayesh, M. H., Farokhi, H., Amabili, M. (2013c), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos Part B-Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021.   DOI
4 Ghayesh, M. H. (2019a), "Mechanics of viscoelastic functionally graded microcantilevers", Eur J Mech A-Solid, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.   DOI
5 Ghayesh, M. H. (2019b), "Viscoelastic dynamics of axially FG microbeams", Int. J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005.   DOI
6 Ghorbanpour Arani, A., Kolahchi, R., Hashemian, M. (2014), "Nonlocal surface piezoelasticity theory for dynamic stability of double-walled boron nitride nanotube conveying viscose fluid based on different theories", P I Mech Eng C-J Mec., 228(17), 3258-3280. https://doi.org/10.1177/0954406214527270.   DOI
7 Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surface", Arch. Ration. Mech. Anal., 57, 291-323. https://doi.org/10.1007/BF00261375.   DOI
8 Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct. 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2.   DOI
9 Hashemi Kachapi, S.H., Dardel, M., Mohamadi daniali, H. and Fathi, A. (2019b), "Nonlinear dynamics and stability analysis of piezo-visco medium nanoshell resonator with electrostatic and harmonic actuation", Appl. Math. Modell., 75, 279-309. https://doi.org/10.1016/j.apm.2019.05.035.   DOI
10 Hashemi Kachapi, S.H., Dardel, M., Mohamadi daniali, H. and Fathi, A. (2019a), "Pull-in instability and nonlinear vibration analysis of electrostatically piezoelectric nanoresonator with surface/interface effects", Thin Walled Struct., 143, 106210. https://doi.org/10.1016/j.tws.2019.106210.   DOI
11 Ghayesh, M. H. (2018), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.   DOI
12 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
13 Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, NY, USA.
14 Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.   DOI
15 Donnell, L.H. (1976), Beam, Plates and Shells, McGraw-Hill, New York, NY, USA.
16 Ebrahimi, F. and Barati, M. R. (2018a), "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.   DOI
17 Ebrahimi, F. and Heidari, E. (2018b), "Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method", Struct. Eng. Mech., 68(1), 131-157. https://doi.org/10.12989/sem.2018.68.1.131.   DOI
18 Fang, X.Q., Zhu, C.S., Liu, J.X. and Liu, X.L. (2018a), "Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures", Physica B., 529, 41-56. https://doi.org/10.1016/j.physb.2017.10.038.   DOI
19 Xiao, Q.X., Zou, J., Lee, K. Y. and Li, X.F. (2017), "Surface effects on flutter instability of nanorod under generalized follower force", Struct. Eng. Mech., 68(6), 723-730. https://doi.org/10.12989/sem.2017.64.6.723.   DOI
20 Wang, W., Rong, D., Xu, C., Zhang, J., Xu, X. and Zhou, Z. (2019), "Accurate Buckling Analysis of Magnetically Affected Cantilever Nanoplates Subjected to In-plane Magnetic Fields", J. Vib. Eng. Technol., https://doi.org/10.1007/s42417-019-00106-3.   DOI
21 Zhu, C.S., Fang, X.Q., Liu, J.X., Li, H.Y. (2017). "Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells", Eur J Mech A-Solid, 66, 423-432. https://doi.org/10.1016/j.euromechsol.2017.08.001.   DOI
22 Zhu, C.S., Fang, X.Q., Liu, J.X., Nie, G.; Zhang, C. (2020). "An analytical solution for nonlinear vibration control of sandwich shallow doubly-curved nanoshells with functionally graded piezoelectric nanocomposite sensors and actuators ", Mech. Based Des. Struc. https://doi.org/10.1080/15397734.2020.1779742.   DOI
23 Hashemi Kachapi, S.H. (2020c), "Vibration analysis and pull-in instability behavior in multi walled piezoelectric nano-sensor with fluid flow conveyance: influences of surface/interface energy", Beilstein J. Nanotechnol., 11, 1072-1081. https://doi.org/10.3762/bjnano.11.92.   DOI
24 Hashemi Kachapi, S.H., Dardel, M., Mohamadi daniali, H. and Fathi, A. (2019c), "Nonlinear vibration and stability analysis of double-walled piezoelectric nanoresonator with nonlinear van der Waals and electrostatic excitation". J. Vib. Control, https://doi.org/10.1177/1077546319889858.   DOI
25 Hashemi Kachapi, S.H., Mohamadi daniali, H., Dardel, M. and Fathi, A. (2020a), "The effects of nonlocal and surface/interface parameters on nonlinear vibrations of piezoelectric nanoresonator", J. Intell. Mater. Syst. Struct., https://doi.org/10.1177/1045389X19898756.   DOI
26 Hashemi Kachapi, S.H. (2020b), "Nonlinear vibration and stability analysis of piezo-harmo-electrostatic nanoresonator based on surface/interface and nonlocal strain gradient effects", J. Braz. Soc. Mech. Sci., 42(107), https://doi.org/10.1007/s40430-020-2173-1.   DOI
27 Rupitsch, S.J. (2019), Piezoelectric sensors and actuators: fundamentals and applications, Springer, New York, USA.
28 Mahmoud, F.F. and Shaat, M. (2015), "A new mindlin FG plate model incorporating microstructure and surface energy effects", Struct. Eng. Mech., 53(1), 105-130. https://doi.org/10.12989/sem.2014.53.1.105.   DOI
29 Jalili, N. (2010), Piezoelectric-Based Vibration Control: From Macro to Micro/Nano Scale Systems, Springer, New York, NY, USA.
30 Li, C., Zhang, N., Fan, X.L., Yan, J.W. and Yao, L.Q. (2019), "Impact Behaviors of Cantilevered Nano-beams Based on the Nonlocal Theory", J. Vib. Eng. Technol. 7, 533-542. https://doi.org/10.1007/s42417-019-00173-6.   DOI
31 Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946.   DOI
32 Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.   DOI
33 Mindlin, R.D. and Eshel, N.N. (1968), "on first strain-gradient theories in linear elasticity", Int. J. Solids Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X.   DOI
34 Sarafraz, A., Sahmani, S. and Mohammadi Aghdam, M. (2019) "Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects", Appl. Math. Modell., 66, 195-226. https://doi.org/10.1016/j.apm.2018.09.013.   DOI
35 Tzou, H. (2019), Piezoelectric Shells: Sensing, Energy Harvesting, and Distributed Control, Springer, New York, NY, USA.
36 Wang, L. and Ni, Q. (2009), "A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid", Mech Res Comm., 36(7), 833-837. https://doi.org/10.1016/j.mechrescom.2009.05.003.   DOI
37 Farokhi, H., Ghayesh, M. H. (2018b), "Nonlinear mechanics of electrically actuated microplates", Int. J. Eng. Sci., 123, 197-213. https://doi.org/10.1016/j.ijengsci.2017.08.017.   DOI
38 Fang, X.Q., Zhu, C.S., Liu, J.X. and Zhao, J. (2018b), "Surface energy effect on nonlinear buckling and postbuckling behavior of functionally graded piezoelectric cylindrical nanoshells under lateral pressure", Mater. Res. Express. 5(4), 045017. https://orcid.org/0000-0003-3341-873X.   DOI
39 Fang, X.Q., Zhang, T.F., Li, B.L., Yuan, R.J. (2020). "Elastic-slip interface effect on dynamic stress around twin tunnels in soil medium subjected to blast waves", Comput. Geotech., 119, 103301, https://doi.org/10.1016/j.compgeo.2019.103301.   DOI
40 Farokhi, H., Païdoussis, M.P. and Misra, A. (2018a), "Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model", J. Sound Vib., 49, 604-629. https://doi.org/10.1016/j.jsv.2017.09.003.   DOI
41 Ghayesh, M. H., Farokhi, H. (2018a), "Nonlinear behaviour of electrically actuated microplate-based MEMS resonators", Mech Syst Signal Pr., 109, 220-234, https://doi.org/10.1016/j.ymssp.2017.11.043.   DOI