• Title/Summary/Keyword: Dimensionality

Search Result 570, Processing Time 0.022 seconds

Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection (머신러닝 기반 금속외관 결함 검출 비교 분석)

  • Lee, Se-Hun;Kang, Seong-Hwan;Shin, Yo-Seob;Choi, Oh-Kyu;Kim, Sijong;Kang, Jae-Mo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.834-841
    • /
    • 2022
  • Recently, applying artificial intelligence technologies in various fields of production has drawn an upsurge of research interest due to the increase for smart factory and artificial intelligence technologies. A great deal of effort is being made to introduce artificial intelligence algorithms into the defect detection task. Particularly, detection of defects on the surface of metal has a higher level of research interest compared to other materials (wood, plastics, fibers, etc.). In this paper, we compare and analyze the speed and performance of defect classification by combining machine learning techniques (Support Vector Machine, Softmax Regression, Decision Tree) with dimensionality reduction algorithms (Principal Component Analysis, AutoEncoders) and two convolutional neural networks (proposed method, ResNet). To validate and compare the performance and speed of the algorithms, we have adopted two datasets ((i) public dataset, (ii) actual dataset), and on the basis of the results, the most efficient algorithm is determined.

Determination of Survival of Gastric Cancer Patients With Distant Lymph Node Metastasis Using Prealbumin Level and Prothrombin Time: Contour Plots Based on Random Survival Forest Algorithm on High-Dimensionality Clinical and Laboratory Datasets

  • Zhang, Cheng;Xie, Minmin;Zhang, Yi;Zhang, Xiaopeng;Feng, Chong;Wu, Zhijun;Feng, Ying;Yang, Yahui;Xu, Hui;Ma, Tai
    • Journal of Gastric Cancer
    • /
    • v.22 no.2
    • /
    • pp.120-134
    • /
    • 2022
  • Purpose: This study aimed to identify prognostic factors for patients with distant lymph node-involved gastric cancer (GC) using a machine learning algorithm, a method that offers considerable advantages and new prospects for high-dimensional biomedical data exploration. Materials and Methods: This study employed 79 features of clinical pathology, laboratory tests, and therapeutic details from 289 GC patients whose distant lymphadenopathy was presented as the first episode of recurrence or metastasis. Outcomes were measured as any-cause death events and survival months after distant lymph node metastasis. A prediction model was built based on possible outcome predictors using a random survival forest algorithm and confirmed by 5×5 nested cross-validation. The effects of single variables were interpreted using partial dependence plots. A contour plot was used to visually represent survival prediction based on 2 predictive features. Results: The median survival time of patients with GC with distant nodal metastasis was 9.2 months. The optimal model incorporated the prealbumin level and the prothrombin time (PT), and yielded a prediction error of 0.353. The inclusion of other variables resulted in poorer model performance. Patients with higher serum prealbumin levels or shorter PTs had a significantly better prognosis. The predicted one-year survival rate was stratified and illustrated as a contour plot based on the combined effect the prealbumin level and the PT. Conclusions: Machine learning is useful for identifying the important determinants of cancer survival using high-dimensional datasets. The prealbumin level and the PT on distant lymph node metastasis are the 2 most crucial factors in predicting the subsequent survival time of advanced GC.

Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data (다변량 지구과학 데이터와 가우시안 혼합 모델을 이용한 공간 분포 추정)

  • Kim, Ho-Rim;Yu, Soonyoung;Yun, Seong-Taek;Kim, Kyoung-Ho;Lee, Goon-Taek;Lee, Jeong-Ho;Heo, Chul-Ho;Ryu, Dong-Woo
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.353-366
    • /
    • 2022
  • Spatial estimation of geoscience data (geo-data) is challenging due to spatial heterogeneity, data scarcity, and high dimensionality. A novel spatial estimation method is needed to consider the characteristics of geo-data. In this study, we proposed the application of Gaussian Mixture Model (GMM) among machine learning algorithms with multivariate data for robust spatial predictions. The performance of the proposed approach was tested through soil chemical concentration data from a former smelting area. The concentrations of As and Pb determined by ex-situ ICP-AES were the primary variables to be interpolated, while the other metal concentrations by ICP-AES and all data determined by in-situ portable X-ray fluorescence (PXRF) were used as auxiliary variables in GMM and ordinary cokriging (OCK). Among the multidimensional auxiliary variables, important variables were selected using a variable selection method based on the random forest. The results of GMM with important multivariate auxiliary data decreased the root mean-squared error (RMSE) down to 0.11 for As and 0.33 for Pb and increased the correlations (r) up to 0.31 for As and 0.46 for Pb compared to those from ordinary kriging and OCK using univariate or bivariate data. The use of GMM improved the performance of spatial interpretation of anthropogenic metals in soil. The multivariate spatial approach can be applied to understand complex and heterogeneous geological and geochemical features.

Dimensionality of emotion suppression and psychosocial adaptation: Based on the cognitive process model of emotion processing (정서 처리의 인지 평가모델을 기반으로 한 정서 억제의 차원성과 심리 사회적 적응)

  • Woo, Sungbum
    • Korean Journal of Culture and Social Issue
    • /
    • v.27 no.4
    • /
    • pp.475-503
    • /
    • 2021
  • The purpose of this study is to clarify the constructs of emotion suppression and help understanding on the multidimensional nature of emotion suppression by classifying constructs for suppression according to the KMW model. Also, this study examined the gender differences of emotion suppression. For this purpose, 657 adult male and female subjects were evaluated for attitude toward emotions, and difficulty in emotional regulation, as well as depression, state anger and daily stress scale. As a result of the exploratory factor analysis on the scales related to the emotion suppression factors, the emotion suppression factors corresponding to each stage of the KMW model were found to be 'distraction against emotional information, 'difficulty in understanding and interpretation of emotions', 'emotion control beliefs', 'vulnerability on emotional expression beliefs'. Next, the study participants were classified by performing a cluster analysis based on each emotion suppression factor. As a result, four clusters were extracted and named 'emotional control belief cluster', 'emotional expression cluster', 'emotional attention failure cluster', and 'general emotional suppression cluster'. As a result of examining the average difference of male depression, depression, state anger, and daily stress for each group, significant differences were found in all dependent variables. As a result of examining whether there is a difference in the frequency of emotional suppression clusters according to gender, the frequency of emotional suppression clusters was high in men, and the ratio of emotional expression clusters was high in women. Finally, it was analyzed whether there was a gender difference in the effect of the emotional suppression cluster on psychosocial adaptation, and the implications were discussed based on the results of this study.

Primary School Spatial Characteristics and Architectural Design Methods based on Prospect and Refuge Concept (조망과 은신개념으로서의 초등학교 공간특성과 건축설계 방법연구)

  • Shim, Eun-Ju
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • With the possibility of preventing crime through environmental design, CPTED guidelines have been introduced and applied to various places. However, although guidelines may be a useful design tool, there are also limitations to referencing it in the early conceptual phase of school architecture. Therefore, the purpose of this study is to examine the concept of "prospect and refuge", which serves as the basis of CPTED, and derives architectural characteristics and application methods based on the concept. For the case study, this research selected six small to medium-scale elementary schools with outstanding creative ideas built within the last 10 years. The results showed that the spatial characteristics of the "prospect" can be achieved by organizing the three-dimensionality of the space, vista prospect, and design attention on circulation areas. The concept of "refuge" was realized through the segmentation of the mass and spatial enclosure. Although the subjects had different social conditions and educational directions in Korea, this study may be used as a theoretical framework for designing a safe school environment.

Study on Dimension Reduction algorithm for unsupervised clustering of the DMR's RF-fingerprinting features (무선단말기 RF-fingerprinting 특징의 비지도 클러스터링을 위한 차원축소 알고리즘 연구)

  • Young-Giu Jung;Hak-Chul Shin;Sun-Phil Nah
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.83-89
    • /
    • 2023
  • The clustering technique using RF fingerprint extracts the characteristic signature of the transmitters which are embedded in the transmission waveforms. The output of the RF-Fingerprint feature extraction algorithm for clustering identical DMR(Digital Mobile Radios) is a high-dimensional feature, typically consisting of 512 or more dimensions. While such high-dimensional features may be effective for the classifiers, they are not suitable to be used as inputs for the clustering algorithms. Therefore, this paper proposes a dimension reduction algorithm that effectively reduces the dimensionality of the multidimensional RF-Fingerprint features while maintaining the fingerprinting characteristics of the DMRs. Additionally, it proposes a clustering algorithm that can effectively cluster the reduced dimensions. The proposed clustering algorithm reduces the multi-dimensional RF-Fingerprint features using t-SNE, based on KL Divergence, and performs clustering using Density Peaks Clustering (DPC). The performance analysis of the DMR clustering algorithm uses a dataset of 3000 samples collected from 10 Motorola XiR and 10 Wintech N-Series DMRs. The results of the RF-Fingerprinting-based clustering algorithm showed the formation of 20 clusters, and all performance metrics including Homogeneity, Completeness, and V-measure, demonstrated a performance of 99.4%.

The Development and Validation of the Silence Motivation Scale (침묵동기 척도 개발 및 타당화)

  • Choi, Myoung Ok;Park Dong gun
    • Korean Journal of Culture and Social Issue
    • /
    • v.23 no.2
    • /
    • pp.239-270
    • /
    • 2017
  • This study investigated the nature and dimensionality of the motives why employees showed the silence even though they could speak up their opinions. It aimed to develop the scales measuring employee silence. Thus, three studies were designed and particularly, two studies featured two different studies, totaling five studies. Study 1 conducted open-ended survey asking and 104 workers from a variety of work field answered. With the results of open-ended questions, a were developed, consisting of 60-items to measure employee silence motivation. Study 2 examined the scale developed and 481 workers from diverse work fields participated in. The exploratory factor and 'intra-ESEM' analyses were confirmed the construct of silence motivation, composing 5 factors(acquiescent, defensive, disengaged, opportunistic, relational silence) the 20-items was developed to measure the construct(Study 2-1). Furthermore, 'inter-ESEM' analysis was examined the discriminant validity of scale developed by the current study with general silence behavior and voice behavior. It found that the employee silence was distinguished from general silence behavior and voice behavior(Study 2-2). Study 3 was designed for validation of silence motivation scale which developed from Study 1 and Study 2. Based on these results, the implications and limitations of this study as well as the direction for future study were discussed.

The Workflow for Computational Analysis of Single-cell RNA-sequencing Data (단일 세포 RNA 시퀀싱 데이터에 대한 컴퓨터 분석의 작업과정)

  • Sung-Hun WOO;Byung Chul JUNG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.10-20
    • /
    • 2024
  • RNA-sequencing (RNA-seq) is a technique used for providing global patterns of transcriptomes in samples. However, it can only provide the average gene expression across cells and does not address the heterogeneity within the samples. The advances in single-cell RNA sequencing (scRNA-seq) technology have revolutionized our understanding of heterogeneity and the dynamics of gene expression at the single-cell level. For example, scRNA-seq allows us to identify the cell types in complex tissues, which can provide information regarding the alteration of the cell population by perturbations, such as genetic modification. Since its initial introduction, scRNA-seq has rapidly become popular, leading to the development of a huge number of bioinformatic tools. However, the analysis of the big dataset generated from scRNA-seq requires a general understanding of the preprocessing of the dataset and a variety of analytical techniques. Here, we present an overview of the workflow involved in analyzing the scRNA-seq dataset. First, we describe the preprocessing of the dataset, including quality control, normalization, and dimensionality reduction. Then, we introduce the downstream analysis provided with the most commonly used computational packages. This review aims to provide a workflow guideline for new researchers interested in this field.

Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation (영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소)

  • Kim Yu-Seop;Chang Jeong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.749-758
    • /
    • 2004
  • In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.

A Hierarchical Cluster Tree Based Fast Searching Algorithm for Raman Spectroscopic Identification (계층 클러스터 트리 기반 라만 스펙트럼 식별 고속 검색 알고리즘)

  • Kim, Sun-Keum;Ko, Dae-Young;Park, Jun-Kyu;Park, Aa-Ron;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.562-569
    • /
    • 2019
  • Raman spectroscopy has been receiving increased attention as a standoff explosive detection technique. In addition, there is a growing need for a fast search method that can identify raman spectrum for measured chemical substances compared to known raman spectra in large database. By far the most simple and widely used method is to calculate and compare the Euclidean distance between the given spectrum and the spectra in a database. But it is non-trivial problem because of the inherent high dimensionality of the data. One of the most serious problems is the high computational complexity of searching for the closet spectra. To overcome this problem, we presented the MPS Sort with Sorted Variance+PDS method for the fast algorithm to search for the closet spectra in the last paper. the proposed algorithm uses two significant features of a vector, mean values and variance, to reject many unlikely spectra and save a great deal of computation time. In this paper, we present two new methods for the fast algorithm to search for the closet spectra. the PCA+PDS algorithm reduces the amount of computation by reducing the dimension of the data through PCA transformation with the same result as the distance calculation using the whole data. the Hierarchical Cluster Tree algorithm makes a binary hierarchical tree using PCA transformed spectra data. then it start searching from the clusters closest to the input spectrum and do not calculate many spectra that can not be candidates, which save a great deal of computation time. As the Experiment results, PCA+PDS shows about 60.06% performance improvement for the MPS Sort with Sorted Variance+PDS. also, Hierarchical Tree shows about 17.74% performance improvement for the PCA+PDS. The results obtained confirm the effectiveness of the proposed algorithm.