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RNA-sequencing (RNA-seq) is a technique used for providing global patterns of transcriptomes in 
samples. However, it can only provide the average gene expression across cells and does not 
address the heterogeneity within the samples. The advances in single-cell RNA sequencing 
(scRNA-seq) technology have revolutionized our understanding of heterogeneity and the dynamics 
of gene expression at the single-cell level. For example, scRNA-seq allows us to identify the cell 
types in complex tissues, which can provide information regarding the alteration of the cell 
population by perturbations, such as genetic modification. Since its initial introduction, scRNA-seq 
has rapidly become popular, leading to the development of a huge number of bioinformatic tools. 
However, the analysis of the big dataset generated from scRNA-seq requires a general 
understanding of the preprocessing of the dataset and a variety of analytical techniques. Here, we 
present an overview of the workflow involved in analyzing the scRNA-seq dataset. First, we describe 
the preprocessing of the dataset, including quality control, normalization, and dimensionality 
reduction. Then, we introduce the downstream analysis provided with the most commonly used 
computational packages. This review aims to provide a workflow guideline for new researchers 
interested in this field.

Copyright Ⓒ 2024 The Korean Society for Clinical Laboratory Science.
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INTRODUCTION

Genomic transcription is tightly regulated, and asses-

sing its expression can be a key to understanding 

pathological conditions. Currently, bulk RNA-sequencing 

(RNA-seq) is the most commonly used technique for 

analyzing transcriptomic profiling in a variety of fields, 

including neuroscience, diabetes, and oncology [1-4]. 

Although bulk RNA-seq is a powerful tool for esti-

mating global transcriptomic profiling in the target 

samples, it can only provide an average of gene expres-

sion across entire populations within the samples. This 

becomes particularly problematic when dealing with 

heterogeneous samples such as blood and biopsies, as 

the uniqueness of each cell within the whole popu-

lation is masked [5]. To overcome this issue, a technique 

for RNA-seq at the single-cell level, known as single- 

cell RNA-Seq (scRNA-seq), has been invented [6]. Since 

its first introduction, scRNA-seq has rapidly gained 

attention due to its ability to facilitate the deconvolu-
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Tabel 1. The descriptions of the popular methods for scRNA-seq pipelines

Task Tool (language) Year Description

General scRNA-seq Seurat (R) 2015∼2023 A popular R package for the preprocessing and explorative 
downstream analysis of single-cell RNA sequencing data. 
Commonly, it is used with a variety of R-based package

General scRNA-seq Scanpy (Python) 2018 A popular Python package for the preprocessing and 
explorative downstream analysis of single-cell RNA 
sequencing data. Commonly, it is used with a variety of 
Python-based package

Empty-drop identification EmptyDrops (R) 2019 It estimates the background levels of RNA present in empty 
droplets, then identifies droplets containing cell that 
significantly deviate from the background

Ambient RNA identification DecontX (Python) 2020 It utilizes Bayesian method to estimate the percentage of 
contaminating transcripts from ambient RNA, then 
removing contaminated transcripts in each cell data

Doublet identification DoubletFinder (R)
Scrublet (Python)

2019
2019

Generate artificial doublets using a nearest-neighbor 
algorithm, then identifies the doublets that are similar to 
artificial doublets

Normalization SCtransform (R) 2019 It utilizes regularized negative binomial regression, which 
represent normalized data value without affected by 
technical issues

Visualization t-SNE (R, Python)
UMAP (R, Python)

2008
2018

Both are unsupervised non-linear dimensionality reduction 
method for visualization. UMAP has been rapidly 
overtaking t-SNE due to its superior ability to preserve 
large-scale structures

Differential expression testing ROTSvoom (R)
D3E (Python)
Limma-trend (R)
Wilcoxon rank-sum (R, Python)

2020 They are famous packages for differential expression 
testing, which show good performance after prefiltering 
lowly expressed genes. Wilcoxon rank-sum test is most 
widely used option

Pseudotime Monocle3 (R)
scTEP (R)

2019
2023

Monocle3 is the most popular package for pseudotime 
while scTEP is the most recently developed package, 
which may show better accuracy

Abbreviations: scRNA-seq, single-cell RNA-sequencing; t-SNE, t-distributed stochastic neighbor embedding; UMAP, uniform manifold 
approximation and projection; scTEP, single-cell data trajectory inference method using ensemble pseudotime.

tion of cell types in heterogeneous samples. In particular, 

scRNA-seq allows us to identify rare populations that 

were unable to be addressed using traditional bulk 

RNA-seq [7]. Moreover, scRNA-seq can be used to trace 

the trajectories of distinct cell lineage in tissue develop-

ment, cancer, and immune cells [8]. Currently, the most 

widely used and most common commercially available 

platform is a droplet-based microfluidics system by 10x 

Genomics [9]. This platform captures single cells into 

each droplet containing beads conjugated to the 

primers with both common and unique barcodes and 

enzymes for library preparation. Each droplet acts as an 

individual reaction chamber where cell lysis and library 

generation take place. Since each generated library has 

unique barcodes, each cell can be distinguished and 

analyzed at a single-cell level. However, the data gene-

rated from scRNA-seq is much more complex than bulk 

RNA-seq and there is not a universal standardization to 

analyze the dataset. For analyzing scRNA-seq, we need 

to use a bunch of bioinformatic tools (Table 1). In this 

article, we aim to provide general considerations when 

dealing with analyzing the scRNA-seq datasets. In 

addition, we focused on introducing relatively new and 

most widely used tools for scRNA-seq rather than the 

explaining complex algorithm and mathematics 

underlying each tool. For new researchers interested in 

this field, this paper can serve as a reference to build a 

workflow for scRNA-seq analysis that can be modified 

to their own research context.
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MAIN ISSUE

1. Preprocessing of Data from Single-cell 

RNA-sequencing

Unlike traditional bulk RNA-seq, droplet-based scRNA- 

seq can generate a variety of artifacts such as empty 

droplets and ambient RNA. In addition, we need to 

remove the data generated from damaged cells and 

non-single cells (i.e. duplet or multiplets) by compu-

tational tools. In the first section, we will discuss how to 

remove the data from low-quality cells. Then, we will 

discuss data normalization and visualization in low- 

dimensional space.

1) Quality Control of the Data

The first step of scRNA-seq data analysis is to ensure 

that each transcriptomic data corresponds to intact live 

cells. With a droplet-based microfluidics system, it is 

unavoidable to have empty drops as cells in the target 

sample are highly diluted to achieve a single cell in each 

droplet. In addition, ambient RNA released from damaged 

and dead cells in the microfluidics system can be encap-

sulated in empty drops. As a result, ambient RNA also 

can be amplified and have its own barcode, which can 

be incorrectly considered as data from real cells. 

Therefore, it is necessary to filter out the data obtained 

from ambient RNA and should not be included for 

further analysis. Initially, this was performed by 

removing all barcodes with lower transcripts [10]. 

Although this method is simple and straightforward, it 

can wrongly filter out the droplets containing small cells 

with low RNA amounts. Recently, several computational 

tools were developed including EmptyDrops to address 

this issue [11]. This method first estimates expression 

profiles of ambient RNA in empty droplets and then 

identifies cell-containing droplets that significantly 

differ from ambient RNA. Moreover, Yang et al [12] 

developed computational tools called DecontX, which 

are designed to remove transcripts from ambient RNA. 

DecontX used a Bayesian method to estimate the 

percentage of contaminating transcripts from ambient 

RNA. After estimation, DecontX can remove contaminated 

transcripts in each cell. With these approaches, resear-

chers will have better cell type recovery as it does not 

filter out the data obtained from cells with low RNA 

content. Next, the data generated by the damaged cell 

should be filtered out. Since mitochondrial RNA 

(mtRNA) is more likely to be retained in damaged cells 

due to the mitochondrial membranes, a higher pro-

portion of mtRNA is a widely used criterion to deter-

mine damaged cells [13]. The cutoff value for the 

acceptable proportion of mtRNA is varied depending 

on the tissue types, technical factors, etc [14]. In 

general, 5%∼10% of the threshold can be a starting 

point to adjust the cut-off value to distinguish normal 

and damaged cells [14, 15]. Another important aspect 

to take into account is the removal of multiplet artifacts, 

which represent two or more cells in a single droplet, 

from the dataset for further analysis. Typically, the 

frequency of multiplets is positively correlated with the 

concentration of the input cell. Although diluted cell 

suspension can reduce the frequency of multiplets, it is 

not feasible to dilute too much as it reduces cell 

recovery. In this regard, several computational tools 

such as DoubletFinder and Scrublet were proposed [16, 

17]. The algorithms of the two tools are similar. The 

tools generate artificial doublets by combining two 

randomly selected droplets of gene expression data. 

Subsequently, doublet scores in real scRNA-seq data 

are calculated based on the similarity of artificial 

droplets using k-nearest neighbors algorithm [18]. One 

of the main differences between these tools is the 

hyperparameter setting such as the number of artificial 

droplets and the number of principal components to 

determine nearest neighbors [18]. Although these two 

tools have their own strength, the recent benchmarking 

result indicates DoubletFinder method shows the best 

doublet detection accuracy among the 9 cutting-edge 

computational tools [18]. An overview of the compu-

tational methods to isolate intact live cells is illustrated 

in Figure 1.
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Figure 1. Isolation of dataset derived from single cell by computational methods.
Abbreviation: mtRNA, mitochondrial RNA.

2) Normalization of the Data

After cell-level quality control, data normalization is 

a prerequisite to correct for cell-to-cell differences due 

to technical variability such as capture efficiency, ampli-

fication biases, and sequencing depth (number of 

transcripts detected per cell) [19]. If data is not normalized 

properly, downstream analysis such as comparison of 

gene expression and clustering of subpopulations would 

be biased. One of the common normalized methods is 

library size (total counts) normalization [20]. This 

process involves dividing the read count of each cell by 

a size factor to normalize the library size across all cells. 

For example, let us assume that we have scRNA-seq 

data derived from mouse tissue. Then, we can suppose 

that cell A has 10 reads from the Pparg gene with a total 

of 1×106 reads and cell B has 20 reads from the Pparg 

gene with a total of 2×106 reads. Since cell B has a 

2-fold library size compared to cell A, the actual expres-

sion level of Pparg is the same after normalization. 

While this approach is simple, it is based on the assump-

tion that variations in library size across cells are due to 

technical issues, not genuine biological heterogeneity. 

However, it is possible that certain cell types have more 

transcripts than others [21]. Moreover, library size 

normalization can be skewed by highly expressed genes, 

which have more read counts and therefore contribute 

more to the normalization process [22]. To overcome 

this issue, several new normalization methods designed 

specifically for single-cell studies have been published. 

SCtransform is one of the most widely used normali-

zation tools for scRNA-seq [23, 24]. It calculates Pearson 

residuals from a regularized negative binomial regression, 

which can eliminate variations derived from technical 

sources such as sequencing depth, but conserve biolo-

gical variations [23]. The data normalized by SCtransform 

showed more accurate downstream analysis, compared 

to the data normalized by other size-factor-based 

methods such as Scran and standard log-normalization 

[23]. SCtransform is a freely available R package and 

has been integrated into the single-cell toolkit, Seurat.

3) Feature Selection and Dimensionality Reduction

In the data generated from scRNA-seq, the expression 

value of each gene represents a dimension. While high- 

dimensional data is more informative compared to 

traditional approaches that rely on low-throughput 

techniques, interpreting high-dimensional data can be 

much more difficult. Feature selection is the computa-
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Figure 2. t-SNE and UMAP plots, generated from the artificial dataset.
Abbreviations: t-SNE, t-distributed stochastic neighbor embedding; 
UMAP, uniform manifold approximation and projection.

tional technique, which selects genes that efficiently 

describe the original dataset. In other words, it excludes 

genes that act as noise and redundancy. For example, if 

two genes (features) are perfectly correlated, selecting 

one feature can be enough to describe the original 

dataset and the other feature is no longer informative 

but can serve as a noise. Therefore, feature selection 

(excluding the irrelevant features) can help in not only 

reducing computational burden but also providing a 

better understanding of the data to improve down-

stream analysis [25]. To exclude irrelevant features, it is 

necessary to estimate the relevance of each feature to 

the dataset. A commonly used approach is selecting 

highly variable genes (HVGs) because it does not require 

any prior knowledge such as predefined cell marker 

genes [26]. Several tools, like Seurat, can calculate the 

mean expression and dispersion of genes to identify 

HVGs [27]. Typically, genes with the highest variance- 

to-mean ratio are selected first as HVGs, with the 

number ranging from 1,000 to 5,000 depending on the 

complexity of the dataset [28].

After selecting HVGs, the dimensions of the dataset 

can be further reduced by several dimensionality reduction 

methods for visualization in two- or three-dimensional 

space. For the data generated from scRNA-seq, t-distri-

buted stochastic neighbor embedding (t-SNE) and 

uniform manifold approximation and projection (UMAP) 

are the most widely used dimensionality reduction 

techniques for two dimensions visualization (Figure 2) 

[29]. t-SNE is an unsupervised non-linear dimensionality 

reduction method that maps high-dimensional data 

points to two dimensions while preserving the local 

structures [30]. The algorithm of t-SNE is creating a 

probability distribution for the high-dimensional data 

that represents data (each cell) similarities a high-dimen-

sional space. For example, similar cells are assigned a 

higher probability that the cell would choose another 

similar cell as its neighbor in high dimensions. Then, 

t-SNE defines a probability distribution that represents 

data similarities in the lower dimensions (usually two 

dimension) and try to minimize the Kullback–Leibler 

divergence (KL divergence) between the two distri-

butions [31]. By minimizing KL divergence, the data in 

low dimensional space becomes similar to the original 

structure of the data (the data in high dimensional space) 

[32]. However, the disadvantages of t-SNE algorithms 

are (1) inaccuracies of the global structure, (2) slow 

computation time due to the complex calculations, and 

(3) computationally unfeasibility with large datasets, 

such as those with over 10,000 cells [33]. In this regard, 

UMAP has been introduced and has become preferable 

over t-SNE [34]. The underlying algorithm of UMAP is 

constructing a fuzzy topological structure that repre-

sents the likelihood of a connection between the cells in 

high dimensional space. Then it optimizes the low dimen-

sional representation to make its fuzzy topological 

structure as similar as possible to the original dataset 

[35]. Recently, UMAP has been rapidly overtaking t-SNE 

due to its superior ability to preserve large-scale struc-

tures and its better scaling performance, which results 

in faster processing time [36]. However, a recent paper 

argues that an advanced t-SNE algorithm can perform 

at a similar speed and can preserve the global structure 

in a manner similar to UMAP [37]. Therefore, it is still 

controversial which algorithm is more suitable for 

visualizing the data from scRNA-seq.

2. Downstream Analysis of Single-cell RNA-sequencing

After applying appropriate preprocessing of the 

scRNA-seq dataset, the processed dataset can provide a 

vast amount of information including inference of the 

cell types and the ordering of cells along a lineage based 
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Figure 3. Leiden clustering visualized in 
t-SNE and UMAP plots, generated from 
the artificial dataset.
Abbreviations: t-SNE, t-distributed sto-
chastic neighbor embedding; UMAP, uni-
form manifold approximation and pro-
jection.

on the gene expression at the single cell level. In the 

following section, we provide information regarding the 

most popular and widely used downstream analyses.

1) Unsupervised Clustering and Cell Type Annotation

A common analysis step after dimensionality reduc-

tion is unsupervised clustering to identify the groups of 

cells with similar characteristics based on the expres-

sion profiles. Although there are several tools were 

developed, Leiden clustering is recently developed and 

shows better performance, compared to classical methods 

such as Louvain clustering [38]. The Leiden algorithm is 

based on modularity and hierarchical clustering. 

Modularity is a measure of the strength of communities 

and shows dense connections between the nodes when 

communities have high modularity [39]. Hierarchical 

clustering is an unsupervised machine learning algori-

thm that pairs objects based on the similarity between 

the dataset [40]. After running the Leiden algorithm, the 

clustering can be visualized with t-SNE or UMAP. When 

running Leiden clustering for your dataset, it is impor-

tant to note that resolution parameters used for com-

puting the modularity can specify the number of commu-

nities (clusters). Figure 3, which was implemented by 

Scanpy (python based), shows the Leiden clustering 

visualized in t-SNE and UMAP representation at two 

different resolution settings [41]. The resolution 

parameters are generally optimized with cell type anno-

tations by checking gene expression profiles in each 

cluster and the researcher needs to decide the degree of 

annotation detail. For example, a satisfactory cell label 

could be “natural killer (NK) cells,” but it can be further 

divided into “NK cells” and “activated NK cells” [42]. To 

identify cell types, researchers need to explore the 

scRNA dataset, which shows transcriptomic profiles of 

clusters, and manually inspect whether established 

marker genes that have been reported for a given cell 

type are expressed in certain clusters. For example, 

CD31‒, CD45‒, Ter119‒ and PDGFRα+ can be the cell 

maker for adipose precursor cells in stromal vascular 

fraction [2]. 

2) Differential Expression Testing

Differential expression testing can provide biological 

insights into differences between two experimental 

conditions, and it is very well-documented in bulk 

RNA-seq [1]. Briefly, differential expression testing can 

be conducted using three generational statistical tests: 

(1) over-representation analysis, (2) functional class 

scoring, and (3) topology-based pathway analysis. 

Through differential expression testing, researchers 

can identify important biological pathways from the 
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gene list of differentially expressed genes or the total 

gene list assigned with gene scores (ranking). With the 

dataset from scRNA-seq, it is particularly useful to dissect 

cell-type-specific responses to perturbations such as 

chemical treatment, disease, or genetical modification. 

For example, imagine a scenario where we have identified 

immune cells in the whole blood from wild-type and 

genetically altered mice through scRNA-seq analysis. 

Then, we can select certain cell types, such as monocyte 

only, from the dataset and identify relevant biological 

pathways from the two genotypes of mice. This allows 

us to determine which cell types are most perturbed or 

mostly involved in phenotypic change by genetic 

alteration. However, differential expression testing for 

scRNA-seq is much more challenging, compared to 

bulk RNA-seq because scRNA-seq data typically has 

lower library sizes, high noise levels, and “dropout” 

events, where certain genes are detected in small popu-

lations but not detected in other populations (i.e. lots of 

the zero value of certain genes in certain populations) 

[43]. Moreover, given the clustering is already defined 

based on the gene profiling before differential expre-

ssion testing in scRNA-seq analysis, clustering and differ-

ential expression testing are not independent which 

results in artificial false discoveries [44]. In this regard, 

Soneson and Robinson [45] compared several methods 

to find differential expression testing in the scRNA-seq 

dataset. They suggest that prefiltering of lowly expressed 

genes can be beneficial to type I error control and 

ROTSvoom, D3E, limma-trend, the t-test, and the 

Wilcoxon test performed well in terms of lower false 

discovery proportions. Indeed, the Wilcoxon rank-sum 

test is the most widely used statistical method for 

differential expression testing employed in recent 

scRNA-seq analysis [44]. Wilcoxon rank-sum test is the 

default option for differential expression testing in the 

single-cell toolkit, Seurat.

3) Pseudotime

One of the most revolutionary uses of scRNA-seq is to 

assess cellular state transitions, which are characte-

rized by cascades of gene expression changes [7]. For 

example, cascades of gene expression changes are well 

documented during the cell cycle and cell differen-

tiation [46, 47]. Pseudotime analysis can assign each 

cell to a specific position based on its gene expression 

patterns, which provides an ordering of cells along a 

trajectory or lineage [48]. More than 70 pseudotime 

analysis tools have already been developed, but the 

most famous and widely used method is an R package, 

Monocle [49, 50]. Monocle3, the most recent version of 

Monocle, uses a principal graph algorithm and calcu-

lates the geodesic distance of cells from the user-selected 

root node in the trajectory as a hypothesized time 

course, pseudotime [51]. Recently, the single-cell data 

trajectory inference method using ensemble pseudo-

time inference (scTEP) is proposed by Zhang et al [52]. 

It takes advantage of the multiple clustering results and 

fine-tuning algorithm for improving pseudotime accu-

racy. They compared the scTEP with other pseudotime 

analysis methods using 41 real scRNA-seq data sets and 

showed better robustness and accuracy. 

3. Clinical Applications of Single-cell RNA-sequencing

Since the introduction of scRNA-seq, numerous studies 

have been conducted mostly by specialized research 

groups with expertise in single-cell isolation and compu-

tational analysis. Recently, scRNA-seq has become 

more accessible to the broader research community 

including biomedical researchers and clinical researchers 

[8]. Especially, the field of oncology has been actively 

studied using scRNA-seq [53]. Since one of the major 

causative factors for cancer is genomic disruption, 

cancer cells likely have distinct transcriptome profiling 

from their normal counterparts [54]. Therefore, cancer 

cells would be shown in a distinct cluster whereas 

normal cells would be located in broader clusters in the 

UMAP of scRNA-seq [55]. Then, we could further 

analyze the cancer-specific cluster if there are certain 

mutations converting normal cells to cancer cells. In 

Figure 4, we can consider that cluster 8 is a cancer- 

specific cluster. If we use bulk RNA-seq, we may not 
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Figure 4. Clinical applications of scRNA- 
seq.
Abbreviations: scRNA-seq, single-cell 
RNA-sequencing; UMAP, uniform mani-
fold approximation and projection.

find the mutation because cancer-specific cluster 8 is a 

relatively small population, which could be masked 

from other major populations. With scRNA-seq, we can 

specifically characterize the cancer cell and apply appro-

priate therapeutic options (Figure 4A). For example, 

mutations in epidermal growth factor receptor (EGFR) are 

almost exclusively found in lung adenocarcinomas and the 

drug for each mutation varies (e.g. EGFR exon 19 deletions 

and exon 21 L858R alterations-erlotinib, gefitinib, and 

afatinib; EGFR exon 20 insertions-osimertinib and pozio-

tinib) [56, 57]. In addition, we may find specific biomarkers 

after differential expression testing. In dot plots, a gene 

I exclusively expressed in the cancer-specific cluster, 

which could be considered as a potential biomarker 

gene (Figure 4B). Furthermore, the construction of tumor 

microenvironment is available through scRNA-seq. Since 

tumor tissue has different microenvironments consisting 

of heterogeneous cell types such as tissue-resident 

cells, endothelial cells, and tumor-infiltrating immune 

cells, the population ratio of each cell type can be 

valuable information to understand characterization of 

the cancers [58]. In Figure 4C, we can compare cell 

populations between healthy and cancer patients to 

construct the tumor microenvironment. Among the 9 

clusters, clusters 3 and 4 are increased whereas cluster 

1 is decreased in cancer patients (Figure 4C). Therefore, 

comparison between these clusters can be interesting 

in understanding the mechanisms of disease and 

finding new therapeutic targets.

CONCLUSION

scRNA-seq technology has opened the avenue to 

investigate cellular heterogeneity of RNA transcripts at 

the single-cell level. The field of scRNA-seq analysis is 

rapidly expanding, with advanced platforms and compu-

tational tools emerging regularly. In this review, we 

provide an overview of analyzing the scRNA-seq 

datasets with the introduction of the most commonly 

used R packages and recently developed tools for 

preprocessing of the data and downstream analysis. 

However, researchers need to be aware that none of the 

analytical tools is flawless and the tools of scRNA-seq 

analysis are rapidly emerging to overcome current 

limitations. Therefore, researchers should expect there 

will be other improvements to the packages shortly 

although the computational tools described here remain 

valid over time.
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요  약

RNA-시퀀싱은 표본에 대한 전사체 전체의 패턴을 제공하

는 기법이다. 그러나 RNA-시퀀싱은 표본 내 전체 세포에 대

한 평균 유전자 발현만 제공할 수 있으며, 표본 내의 이질성

(heterogeneity)에 대한 정보는 제공하지 못한다. 단일 세포 

RNA-시퀀싱 기술의 발전을 통해 우리는 표본의 단일 세포 수준

에서 이질성과 유전자 발현의 동역학(dynamics)에 대한 이해

를 할 수 있게 되었다. 예를 들어, 우리는 단일 세포 RNA-시퀀싱

을 통해 복잡한 조직을 구성하는 다양한 세포 유형을 식별할 수 

있으며, 특정 세포 유형의 유전자 발현 변화와 같은 정보를 알 수 

있다. 단일 세포 RNA-시퀀싱은 처음 도입된 이후 많은 이들의 

관심을 끌게 되었으며, 이를 활용하기 위한 대규모 생물정보학

(bioinformatics) 도구가 개발되었다. 그러나 단일 세포 RNA-

시퀀싱에서 생성된 빅데이터 분석에는 데이터 전처리에 대한 이

해와 전처리 이후 다양한 분석 기술에 대한 이해가 필요하다. 본 

종설에서는 단일 세포 RNA-시퀀싱 데이터분석과 관련된 작업

과정의 개요를 제시한다. 먼저 데이터의 품질 관리, 정규화 및 차

원 감소와 같은 데이터의 전 처리 과정에 대해 설명한다. 그 이후, 

가장 일반적으로 사용되는 생물정보학 도구를 활용한 데이터의 

후속 분석에 대해 설명한다. 본 종설은 이 분야에 관심이 있는 새

로운 연구자를 위한 가이드라인을 제공하는 것을 목표로 한다.
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