• Title/Summary/Keyword: Dimensional model

Search Result 9,268, Processing Time 0.041 seconds

Behavior of Gaseous Volatile Organic Compounds Considered by Density-Dependent Gas Advection (밀도차에 의해 발생하는 이송을 고려한 휘발성 유기화합물 가스의 거동)

  • 이창수;이영화
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1321-1326
    • /
    • 2002
  • A numerical model is investigated to predict a behavior of the gaseous volatile organic compounds and a subsurface contamination caused by them in the unsaturated zone. Two dimensional advective-dispersion equation caused by a density difference and two dimensional diffusion equation are computed by a finite difference method in the numerical model. A laboratory experiment is also carried out to compare the results of the numerical model. The dimensions of the experimental plume are 1.2m in length, 0.5m in height, and 0.05m in thickness. In comparing the result of 2 methods used in the numerical model with the one of the experiment respectively, the one of the advective-dispersion equation shows better than the one the diffusion equation.

Determination of Two Dimensional Axisymmetric Finite Element Model for Reactor Coolant Piping Nozzles (원자로 냉각재 배관 노즐의 2차원 축대칭 유한요소 모델 결정)

  • Choi, S.N.;Kim, H.N.;Jang, K.S.;Kim, H.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.432-437
    • /
    • 2000
  • The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The the radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively.

  • PDF

Flow Visualization Model Based on B-spline Volume (비스플라인 부피에 기초한 유동 가시화 모델)

  • 박상근;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 1997
  • Scientific volume visualization addresses the representation, manipulation, and rendering of volumetric data sets, providing mechanisms for looking closely into structures and understanding their complexity and dynamics. In the past several years, a tremendous amount of research and development has been directed toward algorithms and data modeling methods for a scientific data visualization. But there has been very little work on developing a mathematical volume model that feeds this visualization. Especially, in flow visualization, the volume model has long been required as a guidance to display the very large amounts of data resulting from numerical simulations. In this paper, we focus on the mathematical representation of volumetric data sets and the method of extracting meaningful information from the derived volume model. For this purpose, a B-spline volume is extended to a high dimensional trivariate model which is called as a flow visualization model in this paper. Two three-dimensional examples are presented to demonstrate the capabilities of this model.

  • PDF

Two-dimensional unsteady flow analysis with a five region turbulence models for a simple pipeline system (단순한 관망체계에서 5영역 난류 모형을 이용한 2차원 부정류 흐름 해석 연구)

  • Kim, Hyun Jun;Kim, Sangh Hyun;Baek, Da Won
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.971-976
    • /
    • 2018
  • An accurate analysis of pipeline transient is important for proper management and operation of a water distribution systems. The computational accuracy and its cost are two distinct components for unsteady flow analysis model, which can be strength and weakness of three-dimensional model and one-dimensional model, respectively. In this study, we used two-dimensional unsteady flow model with Five-Region Turbulence model (FRTM) with the implementation of interaction between liquid and air Since FRTM has an empirical component to be determined, we explored the response feature of two-dimensional flow model. The relationship between friction behaviour and the variation of undetermined parameter was configured through the comparison between numerical simulations and experimental results.

Two­Dimensional Warranty Data Modelling (2차원 품질보증데이터 모델링)

  • Jai Wook Baik;Jin Nam Jo
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.4
    • /
    • pp.219-225
    • /
    • 2003
  • Two­dimensional warranty data can be modelled using two different approaches: two­dimensional point process and one­dimensional point process with usage as a function of age. The first approach has three different models. First of all, bivariate model is appealing but is not appropriate for explaining warranty claims. Next, the rest of the two models (marked point process, and counting and matching on both directions independently) are more appropriate for explaining warranty claims. However, the second one (counting and matching on both directions independently) assumes that the two variables (variables representing the two­dimensions) are independent. Last of all, one­dimensional point process with usage as a function of age is also promising to explain the two­dimensional warranty claims. But the models or variations of them need more investigation to be applicable to real warranty claim data.

The differences in the potential energy anomaly for analyzing mixing and stratification between 2D and 3D model

  • Minh, Nguyen Ngoc;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.240-240
    • /
    • 2015
  • As Simpson et al. (1990) emphasized the importance of the straining process in the stratification and mixing in the estuarine circulation process, various researches have investigated on the relative contribution of each process to the overall potential energy anomaly dynamics. However, many numerical works have done only for two dimensional modeling along channel or the short distance cross sectional three dimensional simulations as Burchard et al. (2008) and the estuarine channel was not simulated so far. But, in the study on the physics of shallow coastal seas, spatial dimension in the three dimensional way affects significantly on results of a particular numerical model. Therefore, the comparison of two and three dimensional models is important to understand the real physics of mixing and stratification in an estuary. Also, as Geyer and MacCready (2013) pointed out that the lateral process seems to be important in determining the periodic stratifications, to study such process the three dimensional modeling must be required. The present study uses a numerical model to show the signification roles of each term of the time-dependent dynamic equation for the potential energy anomaly (PEA) in controlling along and lateral channel flows and different stratification structures. Moreover, we present the relationships between the ${\Phi}$-advection, the depth mean straining, vertical mixing and vertical advection can explain well how water level, salinity distribution and across velocity 2D model are slightly different from 3D.

  • PDF

A New Model for the Analysis of Non-Spherical Particle Growth (새로운 비구형 입자 성장 해석 모델)

  • Jeong, Jae-In;Choi, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.1020-1027
    • /
    • 2000
  • A simple model for describing the non-spherical particle growth phenomena has been developed. In this model, we solve simultaneously particle volume and surface area conservation sectional equations that consider particles' non-sphericity. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. This model was compared with a simple monodisperse-assumed model and more rigorous two-dimensional sectional model. For comparison, formation and growth of silica particles have been simulated in a constant temperature reactor environment. This new model showed good agreement with the detailed two-dimensional sectional model in total number concentration and primary particle size. The present model successfully predicted particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

Finite Element Model for Wear Analysis of Conventional Friction Stir Welding Tool

  • Hyeonggeun Jo;Ilkwang Jang;Yeong Gil Jo;Dae Ha Kim;Yong Hoon Jang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.118-122
    • /
    • 2023
  • In our study, we develop a finite element model based on Archard's wear law to predict the cumulative wear and the evolution of the tool profile in friction stir welding (FSW) applications. Our model considers the rotational and translational behaviors of the tool, providing a comprehensive description of the wear process. We validate the accuracy of our model by comparing it against experimental results, examining both the predicted cumulative wear and the resulting changes to the tool profile caused by wear. We perform a detailed comparison between the predictions of the model and experimental data by manipulating non-dimensional coefficients comprising model parameters, such as element sizes and time increments. This comparison facilitates the identification of a specific non-dimensional coefficient condition that best replicates the experimentally observed cumulative wear. We also directly compare the worn tool profiles predicted by the model using this specific non-dimensional coefficient condition with the profiles obtained from wear experiments. Through this process, we identify the model settings that yield a tool wear profile closely aligning with the experimental results. Our research demonstrates that carefully selecting non-dimensional coefficients can significantly enhance the predictive accuracy of finite element models for tool wear in FSW processes. The results from our study hold potential implications for enhancing tool longevity and welding quality in industrial applications.

A Study on the Combustion Characteristics of Spark Ignition Engine by the Thermodynamic Properties Model (열역학적 물성치 모델에 의한 스파크 점화기관의 연소특성에 관한 연구)

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.75-80
    • /
    • 2014
  • The past several years have seen a substantial growth in mathematical modeling activities whose interests are to describe the performance, efficiency and emissions characteristics of various types of internal combustion engines. The key element in these simulations of various aspects of engine operation is the model of the engine combustion process. Combustion models are then classified into three categories: zero-dimensional, quasi-dimensional and multidimensional models. zero-dimensional models are built around the first law of thermodynamics, and time is the only independent variable. This paper presents a introduction to the combustion characteristics of a spark ignition combustion modeling by zero-dimensional model.

Position and load-swing control of a 2-dimensional overhead crane (2차원 천정크레인의 위치 및 이송물의 흔들림제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.