• Title/Summary/Keyword: Dimensional model

Search Result 9,268, Processing Time 0.035 seconds

Reduced-Scale Model Tests on the Behavior of Tunnel Face Reinforced with longitudinal reinforcements (수평보강재로 보강된 터널 막장의 거동에 관한 축소 모형실험)

  • 유충식;신현강
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.79-86
    • /
    • 2000
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A series of reduced-scale model tests was carried out to in an attempt to verify previously performed three-dimensional numerical modeling and to investigate effects of reinforcement layout on the tunnel face deformation behavior The results of model tests indicate that the tunnel face deformation can significantly reduced by pre-reinforcing the tunnel face with longitudinal members and thus enhancing the tunnel stability. In addition, the model tests results compare fairly well with those from the previously performed three-dimensional finite element analysis. Therefore, a properly calibrated three dimensional model may effectively be used in the study of tunnel face reinforcing technique.

  • PDF

The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model (솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석)

  • 강상욱;김창진;이대희;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

Computer Simulations of 4-Wheeled Vehicle Manoeuvres Using a 3-Dimensional Double-Track Vehicle Model (3차원 차량모델을 이용한 자동차 주행거동의 컴퓨터 시뮬레이션)

  • Choi, Y.H.;Lee, J.H.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.97-108
    • /
    • 1995
  • A 3-dimensional double track vehicle model, that has 12-degress-of-freedom, was proposed to analyze handling and riding behaviours of an automotive car. Nonlinear characteristics of the suspension and steering systems of the vehicle model were considered in its equations of motion, which were solved by using the 4th-order Runge-Kutta integration method. Computer simulations for lane change, steady-state handling, and running-over-bump manoeuvres were made and verified by vehicle tests on proving ground. The computed results of the proposed model showed better agreement with test results than those of the conventional 2-dimensional single track model did. Especially they showed good accuracy near the characteristic speed and in high lateral accelerated manoeuvres.

  • PDF

Microplane Model for RC Planar Members in Tension-Compression (인장-압축상태의 철근콘크리트 면 부재를 위한 미소면 모델)

  • 박홍근;김학준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.279-284
    • /
    • 2000
  • The existing microplane models for concrete ust three-dimensional spherical microplanes even in the analyses for two-dimensional members. Also, they can not describe accurately the post-cracking behavior of reinforced concrete in tension-compression. In this study, a new microplane model that is appropriate for the analyses of reinforced concrete planar members was developed to complement these disadvantages of the existing models. The proposed microplane model uses disk microplanes instead of the existing spherical ones. This new model is effective in numerical analysis because it uses less number of microplanes and two-dimensional stresses. Also, in this microplane model a concept of strain boundary was introduced to describe compressive behavior of reinforced concrete in tension-compression.

  • PDF

Importance of the Settling Velocity on the Suspended Solids Diffusion in Osaka Bay (오사카만에서 부유토사의 확산특성에 대한 침강속도의 중요성)

  • 김종인
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.41-48
    • /
    • 2002
  • Numerical experiments are conducted using a three-dimensional baroclinic equation model and a Lagrangian method for clarifying the effect of th settling velocity on the suspended solids diffusion caused by the dredging and the reclamination works. Diffusion characteristics of the neutral particles and the weighting particles is experimented by the Lagrangian particles trajectory model, The results show that the diffusion characteristics of the suspended solids is effected by the settling velocity classified by the particles size in the density layered semi-closed bay. To estimate exactly the diffusion characteristics of the suspended solids and the contaminant with weight the three-dimensional baroclinic equation model and the three-dimensional Lagrangian particles trajectory model considering the settling velocity of the particle in the density layered semi-closed bay must be used.

Noise Analysis of Sub Quarter Micrometer AlGaN/GaN Microwave Power HEMT

  • Tyagi, Rajesh K.;Ahlawat, Anil;Pandey, Manoj;Pandey, Sujata
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.125-135
    • /
    • 2009
  • An analytical 2-dimensional model to explain the small signal and noise properties of an AlGaN/GaN modulation doped field effect transistor has been developed. The model is based on the solution of two-dimensional Poisson's equation. The developed model explains the influence of Noise in ohmic region (Johnson noise or Thermal noise) as well as in saturated region (spontaneous generation of dipole layers in the saturated region). Small signal parameters are obtained and are used to calculate the different noise parameters. All the results have been compared with the experimental data and show an excellent agreement and the validity of our model.

Zeroth-Order Shear Deformation Micro-Mechanical Model for Periodic Heterogeneous Beam-like Structures

  • Lee, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.55-62
    • /
    • 2015
  • This paper discusses a new model for investigating the micro-mechanical behavior of beam-like structures composed of various elastic moduli and complex geometries varying through the cross-sectional directions and also periodically-repeated along the axial directions. The original three-dimensional problem is first formulated in an unified and compact intrinsic form using the concept of decomposition of the rotation tensor. Taking advantage of two smallness of the cross-sectional dimension-to-length parameter and the micro-to-macro heterogeneity and performing homogenization along dimensional reduction simultaneously, the variational asymptotic method is used to rigorously construct an effective zeroth-order beam model, which is similar a generalized Timoshenko one (the first-order shear deformation model) capable of capturing the transverse shear deformations, but still carries out the zeroth-order approximation which can maximize simplicity and promote efficiency. Two examples available in literature are used to demonstrate the consistence and efficiency of this new model, especially for the structures, in which the effects of transverse shear deformations are significant.

3-Dimensional Finite Element Analysis of Hemming for Automotive Outer Panels by Part Model Assembling Method (부분모델 합성법을 이용한 자동차 외판의 헤밍 공정에 대한 3차원 유한요소해석)

  • 김헌영;임희택;김형종;이우홍;박춘달
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2004
  • Hemming is the last farming process in stamping and determines external quality of automotive outer panels. Few numerical approaches using 3-dimensional finite element model have been applied to a hemming process due to small element size which is needed to express the bending behavior of the sheet around small die comer and comparatively big model size of automotive opening parts, such as side door, back door and trunk lid etc In this study, part model assembling method is suggested and applied to the 3-dimensional finite element simulation of flanging and hemming process far an automotive front hood.

Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7 (차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델)

  • 손정현;유완석;김두현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF

A Three-Dimensional Turbulence Model far the Thermal Discharge into Cross-Flow Field (가로흐름 수역으로 방출되는 3차원 온배수 난류모형)

  • 이남주;최흥식;허재영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.148-155
    • /
    • 1995
  • For an accurate prediction of the temperature Held induced by surface discharge of heated water into an ambient cross-flow field. a three-dimensional near-field numerical model using k-$\varepsilon$ turbulence clousure is developed Rather restricted as it is, the numerical results of the model agree well with the experimental data. The developed model simulates quite adequately the stratification, gravitational lateral spreading, and upward entrainment of thermal jet which cannot be simulated by a depth-integrated two-dimensional numerical model, as well as the interaction with cross-flow.

  • PDF