• Title/Summary/Keyword: Dimensional changes

Search Result 1,594, Processing Time 0.025 seconds

Development of a Measurement Method for Three Dimensional Treeing Degradation using a Computerized Tomography Method

  • Masateru-Yanagiwara;Noboru-Yoshimura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.23-25
    • /
    • 1990
  • In this paper, a system to measure tree degradation of three dimensional phenomena in organic insulating materials using image processing system is discussed. Using a computerized tomography method, volume of tree immediately after tree initiation, as well as changes in the configuration of the tree were measured, which up to now have been difficult to measure. The specimens used an acrylic acid resin. As a result, it was possible to record the cross sections of the tree, and to describe the volume of the tree by the three dimensional measurement.

Effect of Input Data Video Interval and Input Data Image Similarity on Learning Accuracy in 3D-CNN

  • Kim, Heeil;Chung, Yeongjee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.208-217
    • /
    • 2021
  • 3D-CNN is one of the deep learning techniques for learning time series data. However, these three-dimensional learning can generate many parameters, requiring high performance or having a significant impact on learning speed. We will use these 3D-CNNs to learn hand gesture and find the parameters that showed the highest accuracy, and then analyze how the accuracy of 3D-CNN varies through input data changes without any structural changes in 3D-CNN. First, choose the interval of the input data. This adjusts the ratio of the stop interval to the gesture interval. Secondly, the corresponding interframe mean value is obtained by measuring and normalizing the similarity of images through interclass 2D cross correlation analysis. This experiment demonstrates that changes in input data affect learning accuracy without structural changes in 3D-CNN. In this paper, we proposed two methods for changing input data. Experimental results show that input data can affect the accuracy of the model.

The Versatility of Cervical Vertebral Segmentation in Detection of Positional Changes in Patient with Long Standing Congenital Torticollis

  • Hussein, Mohammed Ahmed;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2016
  • Background Congenital muscular torticollis (CMT) is a benign condition. With early diagnosis and appropriate management, it can be cured completely, leaving no residual deformity. However, long-standing, untreated CMT can lead to permanent craniofacial deformities and asymmetry.Methods Nineteen patients presented to the author with congenital muscular torticollis. Three dimensional computed tomography (3-D CT) scans was obtained upon patient’s admission. Adjustment of skull’s position to Frankfort horizontal plan was done. Cervical vertebral segmentation was done which allowed a 3D module to be separately created for each vertebra to detect any anatomical or positional changes.Results The segmented vertebrae showed an apparent anatomical changes, which were most noticeable at the level of the atlas and axis vertebrae. These changes decreased gradually till reaching the seventh cervical vertebra, which appeared to be normal in all patients. The changes in the atlas vertebra were mostly due to its intimate relation with the skull base, while the changes of the axis were the most significantConclusion Cervical vertebral segmentation is a reliable tool for isolation and studying cervical vertebral pathological changes of each vertebra separately. The accuracy of the procedures in addition to the availability of many software that can be used for segmentation will allow many surgeons to use segmentation of the vertebrae for diagnosis and even for preoperative simulation planning.

Comparison of changes in the transverse dental axis between patients with skeletal Class III malocclusion and facial asymmetry treated by orthognathic surgery with and without presurgical orthodontic treatment

  • Song, Han-Sol;Choi, Sung-Hwan;Cha, Jung-Yul;Lee, Kee-Joon;Yu, Hyung-Seog
    • The korean journal of orthodontics
    • /
    • v.47 no.4
    • /
    • pp.256-267
    • /
    • 2017
  • Objective: To evaluate transverse skeletal and dental changes, including those in the buccolingual dental axis, between patients with skeletal Class III malocclusion and facial asymmetry after bilateral intraoral vertical ramus osteotomy with and without presurgical orthodontic treatment. Methods: This retrospective study included 29 patients with skeletal Class III malocclusion and facial asymmetry including menton deviation > 4 mm from the midsagittal plane. To evaluate changes in transverse skeletal and dental variables (i.e., buccolingual inclination of the upper and lower canines and first molars), the data for 16 patients who underwent conventional orthognathic surgery (CS) were compared with those for 13 patients who underwent preorthodontic orthognathic surgery (POGS), using three-dimensional computed tomography at initial examination, 1 month before surgery, and at 7 days and 1 year after surgery. Results: The 1-year postsurgical examination revealed no significant changes in the postoperative transverse dental axis in the CS group. In the POGS group, the upper first molar inclined lingually on both sides (deviated side, $-1.8^{\circ}{\pm}2.8^{\circ}$, p = 0.044; nondeviated side, $-3.7^{\circ}{\pm}3.3^{\circ}$, p = 0.001) and the lower canine inclined lingually on the nondeviated side ($4.0^{\circ}{\pm}5.4^{\circ}$, p = 0.022) during postsurgical orthodontic treatment. There were no significant differences in the skeletal and dental variables between the two groups at 1 year after surgery. Conclusions: POGS may be a clinically acceptable alternative to CS as a treatment to achieve stable transverse axes of the dentition in both arches in patients with skeletal Class III malocclusion and facial asymmetry.

Changes in lower extremity alignment in standing position using a foot plate

  • Lee, Hye-Mi;Yang, Ji-Eun;Lee, Ju-Yeon;Im, Hong-Jun;Jeong, Yu-Jin;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.132-137
    • /
    • 2016
  • Objective: Eversion of the foot is created with internal rotation of the shank, and inversion of the foot is created with external rotation of the shank. The purpose of the study was to investigate the effect of continuous changes in the angle of the subtalar joint on lower extremity alignments. Design: Cross-sectional study. Methods: Seventeen healthy young adult subjects recruited. The subjects were asked to stand up in a natural standing position on a footplate with eye open and equal weight on each foot for 10s in two different conditions: The right subtalar joint was everted continuously $0^{\circ}-20^{\circ}$ and in separate segments of $0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$. The averages of three trials were used. The observation of the changes in the lower extremity was performed with the use of 3-dimensional motion analysis. For data analysis, the SPSS 18.0 software using paired t-test and repeated measures analysis of variance (ANOVA) was applied. Results: The angle was significantly increased at the horizontal rotation angle of the shank, thigh, and ankle without anterior rotation of the pelvis (p<0.05). The maximum horizontal rotation angle at the thigh on $20^{\circ}$ was $-4.52^{\circ}$ in static, and $-3.10^{\circ}$ in the dynamic conditions compared to $0^{\circ}$. Conclusions: Increased unilateral foot pronation, thigh, shank, ankle horizontal rotation variance was significantly effective. The observation of the changes in foot abduction with the use of a 3-dimensional motion analysis augmented in predicting the angle values of each segment of the lower extremity. In further studies, a comparison of the right and left subtalar joints need to be investigated.

Three-dimensional accuracy of different correction methods for cast implant bars

  • Kwon, Ji-Yung;Kim, Chang-Whe;Lim, Young-Jun;Kwon, Ho-Beom;Kim, Myung-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • PURPOSE. The aim of the present study was to evaluate the accuracy of three techniques for correction of cast implant bars. MATERIALS AND METHODS. Thirty cast implant bars were fabricated on a metal master model. All cast implant bars were sectioned at 5 mm from the left gold cylinder using a disk of 0.3 mm thickness, and then each group of ten specimens was corrected by gas-air torch soldering, laser welding, and additional casting technique. Three dimensional evaluation including horizontal, vertical, and twisting measurements was based on measurement and comparison of (1) gap distances of the right abutment replica-gold cylinder interface at buccal, distal, lingual side, (2) changes of bar length, and (3) axis angle changes of the right gold cylinders at the step of the post-correction measurements on the three groups with a contact and non-contact coordinate measuring machine. One-way analysis of variance (ANOVA) and paired t-test were performed at the significance level of 5%. RESULTS. Gap distances of the cast implant bars after correction procedure showed no statistically significant difference among groups. Changes in bar length between pre-casting and post-correction measurement were statistically significance among groups. Axis angle changes of the right gold cylinders were not statistically significance among groups. CONCLUSION. There was no statistical significance among three techniques in horizontal, vertical and axial errors. But, gas-air torch soldering technique showed the most consistent and accurate trend in the correction of implant bar error. However, Laser welding technique, showed a large mean and standard deviation in vertical and twisting measurement and might be technique-sensitive method.

Skeletal stability after 2-jaw surgery via surgery-first approach in facial asymmetry patients using CBCT

  • Hwang, Dae Seok;Seo, Jeong Seok;Choi, Hong Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.11.1-11.8
    • /
    • 2020
  • Background: The purpose of this study is to compare the skeletal stability of two-jaw surgery via surgery-first approach with conventional two-jaw surgery in facial asymmetry patients by measuring the skeletal changes after surgery from a three-dimensional analysis. From January 2010 to January 2014, 40 patients with facial asymmetry who underwent two-jaw surgery in Pusan National University Hospital were included in this study. They were classified into experimental group (n = 20) who underwent two-jaw surgery via surgery-first approach and control group (n = 20) who underwent conventional two-jaw surgery. After selection of 24 landmarks and the construction of horizontal and sagittal, coronal reference planes, changes in 10 linear measurements and 2 angular measurements were compared between the surgery-first approach and conventional groups in the preoperative, immediate postoperative, and postoperative periods. The paired t test and Student t test were used for statistical analysis. The mean and standard deviation of the measurement were calculated for the experimental and control groups. Results: The statistical analysis showed that changes in skeletal measurements were similar between the surgery-first approach and conventional groups, according to each period. However, U1-SRP measurement showed statistically significant changes in surgery-first approach groups at postsurgical change (T1 to T2). Also, the mean treatment duration in the treatment group was 15.9 ± 5.48 months whereas that in the control group was 32.9 ± 14.05 months. Conclusion: In facial asymmetry patients, similar results were observed in the postoperative skeletal stability when 2-jaw surgery via surgery-first approach was compared with conventional 2-jaw surgery. However, significant lateral deviation of upper incisor midline was observed. In addition, a shorter average treatment duration was observed. To stabilize the unstable occlusion after surgery, increased wearing of the stent and proactive rubber guidance will be needed.

A Study for Quality Improvement of Three-dimensional Body Measurement Data (3차원 인체치수 조사 자료의 품질 개선을 위한 연구)

  • Park, Sun-Mi;Nam, Yun-Ja;Park, Jin-Woo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.117-124
    • /
    • 2009
  • To inspect the quality of data collected from a large-scale body measurement and investigation project, it is necessary to establish a proper data editing process. The three-dimensional body measurement may have measuring errors caused from measurer's proficiency or changes in the subject's posture. And it may also have errors caused in the process of algorithm expressing the information obtained from the three-dimensional scanner into numerical values, and in the course of data-processing dealing with numerous data for individuals. When those errors are found, the quality of the measured data is deteriorated, and they consequently reduce the quality of statistics which was conducted on the basis of it. Therefore this study intends to suggest a new way to improve the quality of the data collected from the three-dimensional body measurement by proposing a working procedure identifying data errors and correcting them from the whole data processing procedure-collecting, processing, and analyzing- of the 2004 Size Korea Three-dimensional Body Measurement Project. This study was carried out into three stages: Firstly, we detected erroneous data by examining of logical relations among variables under each edit rule. Secondly, we detected suspicious data through independent examination of individual variable value by sex and age. Finally, we examined scatter-plot matrix of many variables to consider the relationships among them. This simple graphical tool helps us to find out whether some suspicious data exist in the data set or not. As a result of this study, we detected some erroneous data included in the raw data. We figured out that the main errors are not because of the system errors that the three-dimensional body measurement system has but because of the subject's original three-dimensional shape data. Therefore by correcting some erroneous data, we have enhanced data quality.

Investigation for TCE Migration and Mass Discharge Changes by Water Table Rising in Porous Media (투수성 매질 내에서의 지하수위 상승에 따른 TCE 거동특성 및 오염물 이동량 변화 연구)

  • Lee, Dong Geun;Moon, Hee Sun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.27-35
    • /
    • 2013
  • In this study, three dimensional and two dimensional laboratory experiments were conducted to investigate the effect of water table rising on DNAPL migration, contaminants mass discharge ($M_d$), and residual NAPL distribution. The accumulation of TCE in unsaturated zone was observed in both two and three dimensional experiments. This implies DNAPL sources could exist in unsaturated zone at contaminated sites. It has been investigated that the TCE concentration is proportional to the areal ratio of residual TCE. This means the residual TCE obviously could affect the TCE concentration in aquifer system. The results of the two-dimensional experiment indicated that the contaminant sources in unsaturated zone could lead the $M_d$ increasing with water table rising and the source zone heterogeneity could also highly affect the $M_d$.

Three Dimensional FEM Simulation for Spinning of Non-circular Fibers

  • Kim, Heejae;Chung, Kwansoo;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • A finite element method is employed fer a flow analysis of the melt spinning process of a non-circular fiber, a PET(polyethylene terephthalate) filament. The flow field is divided into two regions of die channel and spin-line. A two dimensional analysis is used for the flow within the die channel and a three dimensional analysis fur the flow along the spin-line. The Newtonian fluid is assumed for the PET melt and material properties are considered to be constant except for the viscosity. Effects of gravitation, air drag force, and surface tension are neglected. Although the spin-line length is 4.5 m only five millimeters from the spinneret are evaluated as the domain of the analysis. Isothermal and non-isothermal cases are studied fer the flow within the die channel. The relationship between the mass flow rate and the pressure gradient is presented for the two cases. Three dimensional flow along the spin-line is obtained by assuming isothermal conditions. It is shown that changes in velocity and cross-sectional shape occur mostly in the region of 1mm from the die exit.

  • PDF