• 제목/요약/키워드: Dimensional accuracy

검색결과 2,623건 처리시간 0.024초

Impact of UV curing process on mechanical properties and dimensional accuracies of digital light processing 3D printed objects

  • Lee, Younghun;Lee, Sungho;Zhao, Xing Guan;Lee, Dongoh;Kim, Taemin;Jung, Hoeryong;Kim, Namsu
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.161-166
    • /
    • 2018
  • In the last decade, there has been an exponential increase of scientific interest in smart additive manufacturing (AM) technology. Among the different AM techniques, one of the most commonly applied processes is digital light processing (DLP). DLP uses a digital projector screen to flash an ultraviolet light which cures photopolymer resins. The resin is cured to form a solid to produce parts with precise high dimensional accuracy. During the curing process, there are several process parameters that need to be optimized. Among these, the exposure time affects the quality of the 3D printed specimen such as mechanical strength and dimensional accuracy. This study examines optimal exposure times and their impact on printed part. It was found that there is optimal exposure time for printed part to have appropriate mechanical strength and accurate dimensions. The gel fraction and TGA test results confirmed that the improvement of mechanical properties with the increasing UV exposure time was due to the increase of crosslinked network formation with UV exposure time in acrylic resins. In addition, gel fraction and thermogravimetric analysis were employed to microscopically investigate how this process parameter impacts mechanical performance.

3차원 컴퓨터 그래픽 기술을 이용한 KONUS 내관의 설계와 제작 (DESIGN AND FABRICATION OF INNER KONUS CROWN USING THREE DIMENSIONAL COMPUTER GRAPHICS)

  • 김인섭;김병오;유관희;강동완
    • 대한치과보철학회지
    • /
    • 제38권4호
    • /
    • pp.544-551
    • /
    • 2000
  • A fabrication method of inner and outer crown using CAD/CAM is presented. The information of abutment teeth is transferred to a computer through a 3-dimensional scanner. A Konus inner and outer crown is designed on a computer and a real crown is machined based on this design using CAM. This method can save laboratory time and reduce inaccuracies compare to conventional casting procedure. A stone model with six prepared abutment teeth from a patient was used in this study. Three dimensional information from the model was transferred to a computer using a contact type 3-dimensional scanner with a $25{\mu}m$ accuracy. All margins were identified on a computer image where there is a change in surface taper of a model. To provide a cement space, the image of a inner sur face of a Konus inner crown was duplicated $25{\mu}m$ apart from the surface of a prepared abutment teeth image. The cement space was $20{\mu}m$ at the cervical margin. All Konus crowns were machined with a $10{\mu}m$ accuracy. It was concluded that this method can reduce working-time for the laboratory process and increase accuracy. A further research is required to make a simplified process for a more complex prosthesis.

  • PDF

산업용 로봇을 이용한 3차원 차체측정 시스템 (Three Dimension Car Body Measuring System Using Industrial Robots)

  • 김문상;조경래;박강;신현오
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2555-2560
    • /
    • 1996
  • Inspecting the dimensional accuracy of a car-body in assembly line is a very important process to assure high productivity. Now there exist two common inspecting methods in practice. One is to measure a sampled car-body with three dimensional measuring machine, and the other is to measure car-body with three dimensional measuring machine, and the other is to measure car-body in assembly line using many sensors fixed to a large jig frame. The formal method takes too long to inspect a sampled car-body of a same sort, and cannot therefore give an useful error trend for the whole production. On the other hand, the latter lacks flexibility and is very cost-intensive. By using industrial robots and sensors, an in-line Car-Body Measuring(CBM) system which ensured high flexiblity and sufficient accuracy was developed. This CBM cell operates in real production line and measures the check points by the non-contact type using camera and laser displacement sensor(LDS). This system can handle about 15 Measuring points within a cycle time of 40 seconds. A process computer controls whole process such as data acquisition file handling and data analysis. Robot arms changes in length due to ambient temperature fluctuation affecting the measuring accuracy. To compensate this error, a robot arm calibration process was developed.

Accuracy of a separating foil impression using a novel polyolefin foil compared to a custom tray and a stock tray technique

  • Pastoret, Marie-Helene;Krastl, Gabriel;Buhler, Julia;Weiger, Roland;Zitzmann, Nicola Ursula
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권4호
    • /
    • pp.287-293
    • /
    • 2017
  • PURPOSE. To compare the dimensional accuracy of three impression techniques- a separating foil impression, a custom tray impression, and a stock tray impression. MATERIALS AND METHODS. A machined mandibular complete-arch metal model with special modifications served as a master cast. Three different impression techniques (n = 6 in each group) were performed with addition-cured silicon materials: i) putty-wash technique with a prefabricated metal tray (MET) using putty and regular body, ii) single-phase impression with custom tray (CUS) using regular body material, and iii) two-stage technique with stock metal tray (SEP) using putty with a separating foil and regular body material. All impressions were poured with epoxy resin. Six different distances (four intra-abutment and two inter-abutment distances) were gauged on the metal master model and on the casts with a microscope in combination with calibrated measuring software. The differences of the evaluated distances between the reference and the three test groups were calculated and expressed as mean (${\pm}SD$). Additionally, the 95% confidence intervals were calculated and significant differences between the experimental groups were assumed when confidence intervals did not overlap. RESULTS. Dimensional changes compared to reference values varied between -74.01 and $32.57{\mu}m$ (MET), -78.86 and 30.84 (CUS), and between -92.20 and 30.98 (SEP). For the intra-abutment distances, no significant differences among the experimental groups were detected. CUS showed a significantly higher dimensional accuracy for the inter-abutment distances with -0.02 and -0.08 percentage deviation compared to MET and SEP. CONCLUSION. The separation foil technique is a simple alternative to the custom tray technique for single tooth restorations, while limitations may exist for extended restorations with multiple abutment teeth.

Accuracy of maxillofacial prototypes fabricated by different 3-dimensional printing technologies using multi-slice and cone-beam computed tomography

  • Yousefi, Faezeh;Shokri, Abbas;Farhadian, Maryam;Vafaei, Fariborz;Forutan, Fereshte
    • Imaging Science in Dentistry
    • /
    • 제51권1호
    • /
    • pp.41-47
    • /
    • 2021
  • Purpose: This study aimed to compare the accuracy of 3-dimensional(3D) printed models derived from multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) systems with different fields of view (FOVs). Materials and Methods: Five human dry mandibles were used to assess the accuracy of reconstructions of anatomical landmarks, bone defects, and intra-socket dimensions by 3D printers. The measurements were made on dry mandibles using a digital caliper (gold standard). The mandibles then underwent MDCT imaging. In addition, CBCT images were obtained using Cranex 3D and NewTom 3G scanners with 2 different FOVs. The images were transferred to two 3D printers, and the digital light processing (DLP) and fused deposition modeling (FDM) techniques were used to fabricate the 3D models, respectively. The same measurements were also made on the fabricated prototypes. The values measured on the 3D models were compared with the actual values, and the differences were analyzed using the paired t-test. Results: The landmarks measured on prototypes fabricated using the FDM and DLP techniques based on all 4 imaging systems showed differences from the gold standard. No significant differences were noted between the FDM and DLP techniques. Conclusion: The 3D printers were reliable systems for maxillofacial reconstruction. In this study, scanners with smaller voxels had the highest precision, and the DLP printer showed higher accuracy in reconstructing the maxillofacial landmarks. It seemed that 3D reconstructions of the anterior region were overestimated, while the reconstructions of intra-socket dimensions and implant holes were slightly underestimated.

단일 수복물과 3본 고정성 수복물 지대치 모델에서 삼차원 분석을 통한 구강 스캐너의 정확도 비교 (Comparison of the accuracy of intraoral scanner by three-dimensional analysis in single and 3-unit bridge abutment model: In vitro study)

  • 황미양;손큰바다;이완선;이규복
    • 대한치과보철학회지
    • /
    • 제57권2호
    • /
    • pp.102-109
    • /
    • 2019
  • 목적: 이 연구의 목적은 단일 수복물 지대치와 3본 고정성 수복물 지대치 모델에서 3종류의 구강 스캐너에 따른 정확도를 평가하는 것이다. 재료 및 방법: 본 연구에서는 단일 수복물 지대치와 제1대구치가 상실된 3본 고정성 수복물 지대치를 제작하고, 이를 주모형으로 설정하였다. 제작된 주 모형은 산업용 삼차원 스캐너로 스캔하였고, 이를 참조 스캔 데이터로 설정하였다. 3종류의 구강 스캐너(CS3600, CS3500, 그리고 EZIS PO)를 이용하여 주 모형을 5회 스캔 하였다. 이를 평가 스캔 데이터로 설정하였다. 삼차원 비교분석(Geomagic control X)에서 지대치의 스캔 정확도를 평가하기 위해 분할된 지대치를 선택하여 분석하였다. 통계분석은 SPSS 소프트웨어를 이용하여 분석하였다 (${\alpha}=.05$). 구강 스캐너 정확도는 kruskal-wallis test를 실시하여 비교하였고, pairwise test로 사후 검정을 실시하였다. 단일 수복물 지대치 모델과 3본 고정성 수복물 지대치 모델의 정확도 차이는 mann-whitney U test로 분석하였다. 결과: 구강 스캐너에 따른 정확도의 측정결과는 모두 유의한 차이를 보였다 (P < .05). 그리고 단일 수복물 지대치 모델과 3본 고정성 수복물 지대치 모델의 진도(trueness)는 통계적으로 유의한 차이를 보여주었으며, 단일 수복물 지대치에서 더 좋은 진도를 나타냈다 (P < .05). 정밀도(precision)에서는 유의미한 차이가 없었다 (P = .616). 결론: 단일 수복물과 3본 고정성 수복물 지대치의 정확도를 비교한 결과, 스캔 영역이 늘어날수록 지대치 스캔의 오류는 증가하였고, 3종류의 구강 스캐너에서 3본 고정성 수복물 지대치 모델의 스캔 정확도는 임상적으로 허용 가능하다.

스프링 힘에 의한 배합부가 단조 공정의 3차원 유한요소해석 (Three-dimensional finite element analysis of forging processes with back pressure exerted by spring force)

  • 장성민;김민철;이민철;전병윤;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.470-473
    • /
    • 2009
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

  • PDF

LOM 공정에서의 제품 치수 오차 분석에 관한 연구 (Dimensional Error Analysis of Products from LOM Process)

  • 하성도;김경환;송용억;박태권;김창희
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.89-96
    • /
    • 1998
  • LOM (Laminated Object Manufacturing) process is one of rapid prototyping processes, where shapes are formed by accumulating cross sections of laser-cut paper. The process expects wide popularity since it is simple and the material is familiar to conventional mockup makers. However the dimensional accuracy of LOM parts is not so good as that of traditional wooden mockups, since the stack of adhesive-spread papers causes significant dimensional error. Also it is unclear how the other unknown environmental effects cause the errors as well. In this work the dimensional errors of LOM parts are measured and analysed. Experiments with test parts were performed in order to see the effects of part shape, moist, and sealer on dimensional variations. The characteristic of the paper is also analysed. Re-heating LOM parts, which is shown to have the effect of recovering dimensional changes, is applied to an example part.

  • PDF

육면체 요소를 도입한 유한요소-전달강성계수법에 의한 3차원 고체 구조물의 정적 해석 (Static Analysis of Three Dimensional Solid Structure by Finite Element-Transfer Stiffness Coefficent Method Introducing Hexahedral Element)

  • 최명수;문덕홍
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.78-83
    • /
    • 2012
  • The authors suggest the algorithm for the static analysis of a three dimensional solid structure by using the finite element-transfer stiffness coefficient method (FE-TSCM) and the hexahedral element of the finite element method (FEM). MATLAB codes were made by both FE-TSCM and FEM for the static analysis of three dimensional solid structure. They were applied to the static analyses of a very thick plate structure and a three dimensional solid structure. In this paper, as we compare the results of FE-TSCM with those of FEM, we confirm that FE-TSCM introducing the hexahedral element for the static analysis of a three dimensional solid structure is very effective from the viewpoint of the computational accuracy, speed, and storage.

The factors of dimensional change of Fe-Cu-C sintered objects

  • Fujinaga, Masashi;Suzuki, Yoshitomo
    • 한국분말재료학회지
    • /
    • 제5권4호
    • /
    • pp.299-302
    • /
    • 1998
  • Dimensional accuracy is one of the most important issues in the production of sintered parts. The iron-copper-carbon system is commonly used alloys in sintered structural parts production. The dimensional control of these alloys, however, is not easy because of their complex sintering behavior. This study is an effort to clarify the influence of common factors on dimensional change of Fe-Cu-C sintered structural parts. We determined the effect of such various parameters as chemical composition, particle diameter, compact density, sintering temperature and sintering time on dimensional changes. Consequently, we obtained a useful formula to predict the final dimension in function of these parameters. The effect of typical impurities in copper powder on the dimensional change of sintered parts has also been described.

  • PDF