• Title/Summary/Keyword: Dimensional Partitioning

Search Result 71, Processing Time 0.029 seconds

Design of Non-Parametric Detectors with MMSE (최소평균자승에러 알고리듬을 이용한 non-parametric 검파기 설계)

  • 공형윤
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.171-174
    • /
    • 1998
  • A class of non-parametric detectors based on quantized m-dimensional noise sample space is introduced. Due to assuming the nongaussian noise as a channel model, it is not easy to design the detector through estimating the unknown functional form of noise; instead equiprobably partitioning m-dimensional noise into a finite number of regions, using a VQ and quantiles obtained by RMSA algorithm is used in this paper to design detectors. To show the comparison of performance between single sample detector and system suggested here, Monte-Carlo simulations were used. The effect of signal pulse shape on the receiver performance is analyzed too.

  • PDF

Color Image Segmentation using Hierarchical Histogram (계층적 히스토그램을 이용한 컬러영상분할)

  • 김소정;정경훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1771-1774
    • /
    • 2003
  • Image segmentation is very important technique as preprocessing. It is used for various applications such as object recognition, computer vision, object based image compression. In this paper, a method which segments the multidimensional image using a hierarchical histogram approach, is proposed. The hierarchical histogram approach is a method that decomposes the multi-dimensional situation into multi levels of 1 dimensional situations. It has the advantage of the rapid and easy calculation of the histogram, and at the same time because the histogram is applied at each level and not as a whole, it is possible to have more detailed partitioning of the situation.

  • PDF

Representation of Three-dimensional Polygonal Mesh Models Using Hierarchical Partitioning and View dependent Progressive Transmission (계층적 분할을 이용한 삼차원 다각형 메쉬 모델의 표현 및 인간 시점에 따른 점진적 전송 방법)

  • 김성열;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.132-140
    • /
    • 2003
  • In this paper, we propose a new scheme for view-dependent transmission of three-dimensional (3-D) polygonal mesh models with hierarchial partitioning. In order to make a view-dependent representation of 3-D mesh models, we combine sequential and progressive mesh transmission techniques. By setting higher priorities to visible parts than invisible parts, we can obtain good qualify of 3-D models in a limited transmission bandwidth. In this paper, we use a multi -layer representation of 3-D mesh models based on hierarchical partitioning. After representing the 3-D mesh model in a hierarchical tree, we determine resolutions of partitioned submeshes in the last level. Then, we send 3-D model data by view-dependent selection using mesh merging and mesh splitting operations. By the partitioned mesh merging operation, we can reduce the joint boundary information coded redundantly in the partitioned submeshes. We may transmit additional mesh information adaptively through the mesh spritting operation.

Plastic Displacement Estimates in Creep Crack Growth Testing (크리프 균열 성장 실험을 위한 소성 변위 결정법)

  • Huh Nam-Su;Yoon Kee-Bong;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1219-1226
    • /
    • 2006
  • The ASTM test standard recommends the use of the compact tension specimen for creep crack growth rates measurement. In the creep crack growth rate test, the displacement rate due to creep is obtained by subtracting the contribution of elastic and plastic components from the total load line displacement rate based on displacement partitioning method fur determining $C^*-integral$, which involves Ramberg-Osgood (R-O) fitting procedures. This paper investigates the effect of the R-O fitting procedures on plastic displacement rate estimates in creep crack growth testing, via detailed two-dimensional and three-dimensional finite element analyses of the standard compact tension specimen. Four different R-O fitting procedures are considered; (i) fitting the entire true stress-strain data up to the ultimate tensile strength, (ii) fitting the true stress-strain data from 0.1% strain to 0.8 of the true ultimate strain, (iii) fitting the true stress-strain data only up to 5% strain, and (iv) fitting the engineering stress-strain data. It is found that the last two procedures provide reasonably accurate plastic displacement rates and thus should be recommended in creep crack growth testing. Moreover, several advantages of fitting the engineering stress-strain data over fitting the true stress-strain data only up to 5% strain are discussed.

Hopfield Network for Partitioning of Field of View (FOV 분할을 위한 Hopfield Network)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.120-125
    • /
    • 2002
  • An optimization approach is used to partition the field of view. A cost function is defined to represent the constraints on the solution, which is then mapped onto a two-dimensional Hopfield neural network for minimization. Each neuron in the network represents a possible match between a field of view and one or multiple objects. Partition is achieved by initializing each neuron that represents a possible match and then allowing the network to settle down into a stable state. The network uses the initial inputs and the compatibility measures between a field of view and one or multiple objects to find a stable state.

An Efficient Angular Space Partitioning Based Skyline Query Processing Using Sampling-Based Pruning (데이터 샘플링 기반 프루닝 기법을 도입한 효율적인 각도 기반 공간 분할 병렬 스카이라인 질의 처리 기법)

  • Choi, Woosung;Kim, Minseok;Diana, Gromyko;Chung, Jaehwa;Jung, Soonyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Given a multi-dimensional dataset of tuples, a skyline query returns a subset of tuples which are not 'dominated' by any other tuples. Skyline query is very useful in Big data analysis since it filters out uninteresting items. Much interest was devoted to the MapReduce-based parallel processing of skyline queries in large-scale distributed environment. There are three requirements to improve parallelism in MapReduced-based algorithms: (1) workload should be well balanced (2) avoid redundant computations (3) Optimize network communication cost. In this paper, we introduce MR-SEAP (MapReduce sample Skyline object Equality Angular Partitioning), an efficient angular space partitioning based skyline query processing using sampling-based pruning, which satisfies requirements above. We conduct an extensive experiment to evaluate MR-SEAP.

Conservative Visibility Preprocessing by Expressing 4-D visibility Information on 2-D Spaces (2차원 평면상에 4차원 가시성 정보의 표현을 통한 포괄적 가시성 전처리)

  • Heo, Jun-Hyeok;Wohn, Kwang-Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.5 no.2
    • /
    • pp.9-23
    • /
    • 1999
  • Visibility preprocessing is a useful method to reduce the complexity of scenes to be processed in real-time, and so enhances the overall rendering performance for interactive visualization of virtual environments. In this paper, we propose an efficient visibility preprocessing method. In the proposed method, we assume that navigatable areas in virtual environments are partitioned into rectangular parallelpiped cells or sub-worlds. To preprocess the visibility of each polygon for a given partitioned cell, we should determine at least the area-to-area visibility. This is inherently a four-dimensional problem. We efficiently express four-dimensional visibility information on two-dimensional spaces and keep it within a ternary tree, which is conceptually similar to a BSP(Binary Space Partitioning) tree, by exploiting the characteristics of conservative visibility. The proposed method is able to efficiently handle more general environments like urban scenes, and remove invisible polygons jointly blocked by multiple occluders. The proposed method requires O(nm) time and O(n+m) space. By selecting a suitable value for m, users can select a suitable level of trade-off between the preprocessing time and the quality of the computational result.

  • PDF

Comprehensive review on Clustering Techniques and its application on High Dimensional Data

  • Alam, Afroj;Muqeem, Mohd;Ahmad, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.237-244
    • /
    • 2021
  • Clustering is a most powerful un-supervised machine learning techniques for division of instances into homogenous group, which is called cluster. This Clustering is mainly used for generating a good quality of cluster through which we can discover hidden patterns and knowledge from the large datasets. It has huge application in different field like in medicine field, healthcare, gene-expression, image processing, agriculture, fraud detection, profitability analysis etc. The goal of this paper is to explore both hierarchical as well as partitioning clustering and understanding their problem with various approaches for their solution. Among different clustering K-means is better than other clustering due to its linear time complexity. Further this paper also focused on data mining that dealing with high-dimensional datasets with their problems and their existing approaches for their relevancy

Wavelet based Embedded Video Coding with 3-D Block Partition (3-D 블록분할을 이용하는 웨이브렛 기반 임베디드 비디오 부호화)

  • 양창모;임태범;이석필
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.133-136
    • /
    • 2003
  • In this paper, we propose a low bit-rate embedded video coding scheme with 3-D block partition in the wavelet domain. The proposed video coding scheme includes multi-level three dimensional dyadic wavelet decomposition, raster scanning within each subband, partitioning of blocks, and adaptive arithmetic entropy coding. Although the proposed video coding scheme is quite simple, it produces bit-streams with good features, including SNR scalability from the embedded nature. Experimental results demonstrate that the proposed video coding scheme is quite competitive to other good wavelet-based video coders in the literature.

  • PDF

Parallel Preconditioner for the Domain Decomposition Method of the Discretized Navier-Stokes Equation (이산화된 Navier-Stokes 방정식의 영역분할법을 위한 병렬 예조건화)

  • Choi, Hyoung-Gwon;Yoo, Jung-Yul;Kang, Sung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.753-765
    • /
    • 2003
  • A finite element code for the numerical solution of the Navier-Stokes equation is parallelized by vertex-oriented domain decomposition. To accelerate the convergence of iterative solvers like conjugate gradient method, parallel block ILU, iterative block ILU, and distributed ILU methods are tested as parallel preconditioners. The effectiveness of the algorithms has been investigated when P1P1 finite element discretization is used for the parallel solution of the Navier-Stokes equation. Two-dimensional and three-dimensional Laplace equations are calculated to estimate the speedup of the preconditioners. Calculation domain is partitioned by one- and multi-dimensional partitioning methods in structured grid and by METIS library in unstructured grid. For the domain-decomposed parallel computation of the Navier-Stokes equation, we have solved three-dimensional lid-driven cavity and natural convection problems in a cube as benchmark problems using a parallelized fractional 4-step finite element method. The speedup for each parallel preconditioning method is to be compared using upto 64 processors.