• Title/Summary/Keyword: Dimensional Analysis

Search Result 12,656, Processing Time 0.033 seconds

Analysis of 3D Motion Recognition using Meta-analysis for Interaction (기존 3차원 인터랙션 동작인식 기술 현황 파악을 위한 메타분석)

  • Kim, Yong-Woo;Whang, Min-Cheol;Kim, Jong-Hwa;Woo, Jin-Cheol;Kim, Chi-Jung;Kim, Ji-Hye
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.925-932
    • /
    • 2010
  • Most of the research on three-dimensional interaction field have showed different accuracy in terms of sensing, mode and method. Furthermore, implementation of interaction has been a lack of consistency in application field. Therefore, this study is to suggest research trends of three-dimensional interaction using meta-analysis. Searching relative keyword in database provided with 153 domestic papers and 188 international papers covering three-dimensional interaction. Analytical coding tables determined 18 domestic papers and 28 international papers for analysis. Frequency analysis was carried out on method of action, element, number, accuracy and then verified accuracy by effect size of the meta-analysis. As the results, the effect size of sensor-based was higher than vision-based, but the effect size was extracted to small as 0.02. The effect size of vision-based using hand motion was higher than sensor-based using hand motion. Therefore, implementation of three-dimensional sensor-based interaction and vision-based using hand motions more efficient. This study was significant to comprehensive analysis of three-dimensional motion recognition for interaction and suggest to application directions of three-dimensional interaction.

FEA Simulation for Practical Behaviors of Electrostatic Micro Actuator (마이크로 액추에이터의 실제 거동에 대한 FEA 시뮬레이션)

  • Lee Yang Chang;Lee Joon Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.115-121
    • /
    • 2005
  • Micromachines are extremely novel artifacts with a variety of special characteristics. Utilizing their tiny dimensions ranging roughly from 10 to $10^3$ micro-meters, the micromachines can perform tasks in a revolutionary manner that would be impossible for conventional artifacts. Micromachines are in general related to various coupled physical phenomena. They are required to be evaluated and designed considering the coupled phenomena. This paper describes finite element analysis (FEA) simulation of practical behaviors for the micro actuator. Especially, electric field modeling in micro actuators has been generally restricted to in-plane two-dimensional finite element analysis because of the complexity of the micro actuator geometry. However, in this paper, the actual three-dimensional geometry of the micro actuator is considered. The starting torque obtained from the in-plane two-dimensional analytical solutions were compared with that of the actual three-dimensional FE analysis results. The starting torque is proportional to $V^2$, and that the two-dimensional analytical solutions are larger than the three- dimensional FE ones. It is found that the evaluation of micro actuator has to be considered electrical leakage phenomenon.

Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

  • Rhee, Ye-Kyu;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.460-467
    • /
    • 2015
  • PURPOSE. The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For two-dimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).

A COMPARATIVE STUDY OF THREE DIMENSIONAL RECONSTRUCTIVE IMAGES USING COMPUTED TOMOGRAMS OF FACIAL BONE INJURIES (안면골 외상환자의 전산화단층상을 이용한 삼차원재구성상의 비교연구)

  • Choi Eun-Suk;Koh Kwang-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.2
    • /
    • pp.413-423
    • /
    • 1994
  • The purpose of this study was to clarify the spatial relationship in presurgical examination and to aid surgical planning and postoperative evaluation of patients with facial bone injury. For this study, three-dimensional images of facial bone fracture were reconstructed by computed image analysis system and three-dimensional reconstructive program integrated in computed tomography. The obtained results were as follows: 1. Serial conventional computed tomograms were value in accurately depicting the facial bone injuries and three-dimensional reconstructive images demonstrated an overall look. 2. The degree of deterioration of spatial resolution was proportional to the thickness of the slice. 3. Facial bone fractures were the most distinctly demonstrated on inferoanterior views of three-dimensional reconstructive images. 4. Although three-dimensional reconstructive images made diagnosis of fracture lines, it was difficult to identify maxillary fractures. 5. The diagnosis of zygomatic fractures could be made equally well with computed image analysis system and three-dimensional reconstructive program integrated in computed tomography. 6. The diagnosis of mandibular fractures could be made equally well with computed image analysis system and three-dimensional reconstructive program integrated in computed tomography.

  • PDF

Evaluation of Safety by Structural Analysis of Traditional Wooden Building (전통 목조 건축물의 구조해석에 의한 안전성 평가)

  • Jo, Sung-San;Kim, Hyong-Kee;Park, Bok-Man
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.149-158
    • /
    • 2005
  • In order to grasp and evaluate the characteristics and the safety of traditional wooden building, we select one of the representative traditional wooden building, Buseoksa Muryangsujeon in this study. After the two and three-dimensional structural analysis of this building are performed, the results are compared and analyzed. Following main conclusion are obtained: 1) By comparison between the results of two and three-dimensional structural analysis, they show that the exterior members of this building tend to transfer more load in the three-dimensional analysis. 2) The result of three-dimensional structural analysis shows that the every member stress of Buseoksa Muryangsujeon except Chobang and Jangyon is below allowable stress. 3) For exact modelling of joints of members in traditional wooden building such as Gongpo, it is necessary to accumulate and analyze the technical data through structural test and systematic analysis study.

A Study on the Identification of Vibration Sources of a Gasoline Engine by Multi-Dimensional Spectral Analysis (다차원 스펙트럼 해석 에 의한 가솔린 엔진 의 진동원 검출 에 관한 연구)

  • 강명순;오재응;서상현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.691-698
    • /
    • 1985
  • This paper presents a method for the identification of vibration sources in a multiple input system where the input source may be coherent with each other. Using multi-dimensional spectral analysis, it is found that one of the most significant vibration sources of a gasoline engine is the pressure variation within the cylinder. In this analysis the concepts of residual spectral analysis and the partial coherence function are applied. Finally, the overall levels of the acceleration on the cylinder block obtained by multi-dimensional spectral analysis are compared with those by the frequency response function approach. The experimental results have shown a good agreement with the results calculated by this method the input sources are coherent strongly each other.

DEVELOPMENT OF AN IMPROVED THREE-DIMENSIONAL STATIC AND DYNAMIC STRUCTURAL ANALYSIS BASED ON FETI-LOCAL METHOD WITH PENALTY TERM

  • KIM, SEIL;JOO, HYUNSHIG;CHO, HAESEONG;SHIN, SANGJOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.125-142
    • /
    • 2017
  • In this paper, development of the three-dimensional structural analysis is performed by applying FETI-local method. In the FETI-local method, the penalty term is added as a preconditioner. The OPT-DKT shell element is used in the present structural analysis. Newmark-${\beta}$ method is employed to conduct the dynamic analysis. The three-dimensional FETI-local static structural analysis is conducted. The contour and the displacement of the results are compared following the different number of sub-domains. The computational time and memory usage are compared with respect to the number of CPUs used. The three-dimensional dynamic structural analysis is conducted while applying FETI-local method. The present results show appropriate scalability in terms of the computational time and memory usage. It is expected to improve the computational efficiency by combining the advantages of the original FETI method, i.e., FETI-mixed using the mixed local-global Lagrange multiplier.

Analysis of High Burnup Fuel Behavior Under Rod Ejection Accident in the Westinghouse-Designed 950 MWe PWR

  • Chan Bock Lee;Byung Oh Cho
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.273-286
    • /
    • 1998
  • As there has arisen a concern that failure of the high burnup fuel under the reactivity-insertion accident(RIA) may occur at the energy lower than the expected, fuel behavior under the rod ejection accident in a typical Westinghouse-designed 950 MWe PWR was analyzed by using the three dimensional nodal transient neutronics code, PANBOX2 and the transient fuel rod performance analysis code, FRAP-T6. Fuel failure criteria versus the burnup was conservatively derived taking into account available test data and the possible fuel failure mechanisms. The high burnup and longer cycle length fuel loading scheme of a peak rod turnup of 68 MWD/kgU was selected for the analysis. Except three dimensional core neutronics calculation, the analysis used the same core conditions and assumptions as the conventional zero dimensional analysis. Results of three dimensional analysis showed that the peak fuel enthalpy during the rod ejection accident is less than one third of that calculated by the conventional zero dimensional analysis methodology and the fraction of fuel failure in the core is less than 4 %. Therefore, it can be said that the current design limit of less than 10 percent fuel failure and maintaining the core coolable geometry would be adequately satisfied under the rod ejection accident, even though the conservative fuel failure criteria derived from the test data are applied.

  • PDF

3-Dimensional Numerical Analysis for Thermal Stratification in Surgeline in Nuclear Power Plant (원전 밀림관 열성층의 3 차원 수치해석)

  • Kim, Young-Jong;Kim, Maan-Won;Ko, Eun-Mi
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.729-734
    • /
    • 2008
  • A thermal stratification may occur in the horizontal parts of the surge line during operating transients of the pressurizer, which produces relatively high fatigue usage factor. Heat-up transient is the most severe case among the transient conditions. In this study, to study the relationship between the magnitude of thermal stratification and the length of vertical part of the surge line, some parametric fluid-structure interaction (FSI) analyses with different length variables of the vertical part of the surge line were performed for plant heat-up transient condition by using 3-dimensional numerical analysis. The conservativeness of the traditional finite element model for thermal stratification analysis based on the conservative assumption in the surge line was also discussed by comparison of the results of 3-dimensional transient FSI analysis of this study. Stresses calculated with 3-dimensional transient model were considerably reduced comparing with the traditional analysis.

  • PDF

Three-dimensional Slope Stability Analysis of a Dual-lithology Slope (이종지질 분포사면에서의 3차원 사면안정해석)

  • Seo, Yong-Seok;Lee, Kyoung-Mi;Kim, Kwang-Yeom
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • Three-dimensional slope stability analysis was applied to a failed dual-lithology slope containing both granite and an andesitic dyke, taking account of the differences in shear strength of the different lithologies. A direct shear test of the soil-rock boundary was performed to examine the shear strength of two different types of failure surfaces within different lithologies, and a laboratory test was performed on an upper, weathered soil layer. The test results indicate that shear strength was lower at the soil-rock boundary than within the weathered soil layer. A representative geological section was subjected to two-dimensional slope stability analysis using a limit equilibrium method to assess whether the distribution of lithologies upon the slope influences the results of stability analysis. The results were then compared with those of three-dimensional slope stability analysis, for which input parameters can be varied according to the distribution of lithologies upon the slope. The three-dimensional analysis yielded safety factors of 1.26 under dry conditions and 0.55 under wet conditions, whereas the two-dimensional analysis yielded unstable safety factors of 0.92 and 0.32, respectively. These findings show that the results of stability analysis are affected by the distribution of different lithologies upon the slope. Given that the studied slope collapsed immediately after rainfall, it is likely that the results of the three-dimensional analysis are more reliable.