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ABSTRACT. In this paper, development of the three-dimensional structural analysis is per-
formed by applying FETI-local method. In the FETI-local method, the penalty term is added
as a preconditioner. The OPT-DKT shell element is used in thepresent structural analysis.
Newmark-β method is employed to conduct the dynamic analysis. The three-dimensional
FETI-local static structural analysis is conducted. The contour and the displacement of the re-
sults are compared following the different number of sub-domains. The computational time and
memory usage are compared with respect to the number of CPUs used. The three-dimensional
dynamic structural analysis is conducted while applying FETI-local method. The present re-
sults show appropriate scalability in terms of the computational time and memory usage. It is
expected to improve the computational efficiency by combining the advantages of the original
FETI method, i.e., FETI-mixed using the mixed local-globalLagrange multiplier.

1. INTRODUCTION

Recently, the structural components used in the industrialfields have become more com-
plicated and been required to alleviate the computational cost for the structural analysis. For
the structural analysis of a large-sized structure, which has an enormous number of degrees of
freedom, difficulties in terms of computational time and memory handling were generated.
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One of the most advanced approaches to alleviate such cost was the finite element tearing and
interconnecting method (FETI). The basic idea of FETI method was to decompose the relevant
domain into non-overlapping sub-domains and each of these was assigned to an individual
CPU. And Lagrange multipliers were used to enforce the values of the degrees of freedom to
coincide on the interfaces among the sub-domains [1]. The original FETI method was applied
to a parallel computation algorithm for the second order partial differential equations (PDEs)
[2].

Farhat [2] proposed the original FETI method as a parallel finite element computational
method. He solved the local singularity problems of the floating sub-domains by using a pseudo
inverse matrix. The original FETI method was extended to thedual-primal FETI (FETI-DP)
method, which took standard preconditioned conjugate gradient algorithm (PCG), which was
not used in the original FETI method. Due to the singularity of the stiffness matrix under the
floating sub-domain, the original FETI method procedure wasnot used in the same way for ap-
plication to static and transient dynamic analysis. On the other hand, the FETI-DP method was
applicable to both static and dynamic problems [3]. Park [4]suggested alternative constraints
modeling method to enforce the continuity of the displacement field by using the localized La-
grange multipliers. The local Lagrange multiplier formulations were set about the derivations
of the partitioned equilibrium equations for structure. Bauchau [5-6] proposed an augmented
Lagrangian formulation (ALF) with the use of global and local Lagrange multipliers. The ap-
plication of augmented Lagrangian terms was shown to improve conditioning of the flexibility
matrix, and thereby improving the convergence rate of the iterative procedure used to solve
interface problem. In addition, he reported advanced accuracy by adopting localized Lagrange
multipliers as penalty formulations [5].

In this paper the three-dimensional structural analysis byapplying FETI-local method will
be developed. The OPT-DKT shell element will be used in the structural analysis. Newmark-β
method will be employed to extend the dynamic analysis. The three-dimensional FETI-local
static structural analysis will be conducted. The computational time and memory usage will be
compared with respect to the number of CPUs used. The displacement results will be compared
while using different number of the sub-domains. The three-dimensional dynamic structural
analysis will be conducted. Finally, the computational time in terms of the number of CPUs
will be evaluated.

2. FORMULATIONS

2.1. The FETI-local algorithm. In the FETI-local method, the given domain is divided into
non-overlapping sub-domains and each sub-domain is computed by a single CPU. The addi-
tional interface nodes are used to define localized displacement field. Each sub-domain and
additional interface node are connected by local Lagrange multipliers. The FETI-local method
is a combination of the localized Lagrange multiplier technique with the augmented Lagrangian
formulation and is ideally reasonable for the large size structural analysis. This method uses
a weighting penalty as a preconditioner unlike the originalFETI method. This new approach
provides an ideal preconditioning of the flexibility matrix[7].
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(a) Classical Lagrange multipliers (b) Localized Lagrangemultipliers

FIGURE 1. Comparison between classical and localized Lagrange multipliers

In the original FETI method, continuity of the displacementwas determined by Lagrange
multipliers directly as Fig. 1. (a). The constraint potential and constraint condition were
defined as follows:

Vc = λTC (2.1)

C = u1 − u2 (2.2)

On the other hand, in the FETI-local method, continuity in the displacement field is enforced
by imposing additional interface nodes and local Lagrange multipliers as Fig. 1. (b). The
boundary nodes in each sub-domain are localized with additional interface nodes, which are
used to construct constraint condition. The constraint potential and constraint condition are
defined as follows:

Vc = λ(1)TC(1) + λ(2)TC(2) (2.3)

C(2.1) = u
(1)
b − u(1)c , C(2) = u

(2)
b − u(2)c (2.4)

FIGURE 2. Schematic description of FETI-local method

Figure 2 shows the configuration of the connected sub-domains, through localized Lagrange
multipliers. The number of additional interface nodesλ(i)T is added to the number of internal
nodesu(i)T at each sub-domain. Hence, the total number of nodes for eachsubdomain is
defined as follows:
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û(i) =
{

u(i)
T

λ(i)T
}

(2.5)

The total potential energy of the object structure can be decomposed into three components:

Π = A+Φ+ Vc (2.6)

Π is the total potential energy of the entire structure,A is the strain energy of the total number
of subdomains and defined as follows:

A =
1

2

Ns
∑

i=1

û(i)T K̂
ii
û(i) (2.7)

whereK̂
ii
=

[

diag
(

K
αα

)

0

0 0

]

. K
αα

is the stiffness matrix for theithsub-domain.

Φ is the total potential of the external loads for each sub-domain and defined as follows:

Φ = −
Ns
∑

i=1

û(i)Q̂(i) (2.8)

whereQ̂(i)T =
{

Q(i)T , 0
}

. Q̂(i)T is the external load for theith sub-domain.
And Vc is the potential of constraints defined by localized Lagrange multipliers.

C(j) = u
(j)
b − u(j)c (2.9)

V (j)
c = pλ(j)TC(j) +

p

2
C(j)TC(j) (2.10)

u
(j)
b is the boundary nodes withjth position put on additional interface nodes.λ(j)is the local-

ized Lagrange multipliers used to enforce the local constraints.
In the original FETI method, the interface problem was solved by an iterative method. The

preconditioned conjugate gradient (PCG) algorithm was used for the solution of iteration prob-
lem. Schur complement method was applied for more efficient iteration. However, the ad-
ditional Lagrange multipliers were needed at the cross point for the stable PCG iteration and
reasonably not scalable for fourth-order plate and shell problems [3].

On the other hand, in the FETI-local method, the penalty method is used. The penalty term
p is the scaling factor for the local Lagrange multiplier. Thesecond term of Eq. (2.10) is
characteristic of the penalty method. The penalty termp plays a role as stiffness of a spring
placed between the sub-domains, and Lagrange multipliers are reaction forces that impose the
continuity of the displacement field along the boundary nodes. The penalty method yields an
exact solution if the penalty tends to infinity, but otherwise permits certain violations of the
constraint that the interpenetration has to be zero. It is necessary to estimate the magnitude of
the penalty parameter to limit the penetration [8]. Finally, theu(j)c can be obtained by adding the
penalty term for problem with equality constraints in Eq. (2.10). Further details are expressed
in Ref. 10.
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To satisfy the array in Eq. (2.5), the generalized stiffnessmatrix and force vector can be de-
composed into the boundary nodes and its additional interface nodes at each sub-domain. Ad-
ditionally, f (j) is the force vector in thej-th interconnecting point at an arbitrary sub-domain,

andk(j) is the stiffness matrix of the boundary nodes [1].

f (j) =

{

fb
(j)

Xfc
(j)

}

=







{

pλ(j) + pC(j), pC(j)
}T

{

−pλ(j) − pC(j)
}







(2.11)

K(j) =

[

K
(j)
bb K

(j)
bc

K
(j)
cb K(j)

cc

]

=





pI pI −pI
pI 0 −pI
−pI −pI pI



 (2.12)

To assemble both the force vector and stiffness matrix into each sub-domain, the Boolean
matrix B

(j)
b is used to connect the sub-domain boundary nodes directly tothe global nodes.

Index (.)b and (.)c denote DOFs related to boundary and interface nodes, respectively [1]. More
information about the Boolean matrices is provided in [9].

Finally, the governing equation of the structure could be defined as follows:
[

∑Ns

i=1 (K̂
(i)

+K
(i)
bb )

∑Ns

i=1 K
(i)
bc

∑Ns

i=1K
(i)T
bc

∑Ns

i=1 K
(i)
cc

]

{

û
c

}

=

{

Q̂− f̂
b

−f
c

}

(2.13)

Three computational algorithms are utilized to solve Eq. (2.13).
In the first step, a temporary stiffness matrix and force vector are created.

[

K
11

K
12

K
21

K
22

]{

u
uc

}

=

{

Q̂− f̂
b

−f
b

}

(2.14)

whereK(i)
11

=
N

(i)
b
∑

j=1

(

B(j)T
e

D
(j)
e B(j)

e
+ pB

(j)
b

)

, K(i)
12

=
N

(i)
b
∑

j=1
pB

(j)T
b , K(i)

21
=

N
(i)
b
∑

j=1
pB

(j)
b

The localized Lagrange multipliers are evaluated in the second step.

uc = K∗−1f∗ (2.15)

whereK∗ = K
22

−K
21
K−1

11
K

12
, f∗ = −fb −K

21
K−1

11
(Q̂− f̂

b
)

Finally, the displacement of the total number of degrees of freedom is derived.

û = K−1
11

{

Q̂− F̂ b −K
12
uc

}

(2.16)

Figure 3 shows the three steps for the present parallel computation algorithm. At first, the
full geometry is decomposed into the number of sub-domains by Message Passing Interface
(MPI). In Step I, Boolean matrices are defined to connect boundary nodes to interface nodes,
and define the stiffness matrix and force vector in each sub-domain. In this procedure, each
sub-domain is calculated in each CPU. To solve the interfaceproblems, the assembling of
the stiffness matrix and force vectors of each sub-domain into the full stiffness matrix and
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FIGURE 3. Three steps in the present parallel computing algorithm

force vector, is required. Finally, all the degrees of freedoms of interface nodes are used to
solve the displacement of each sub-domain. In the third step, it is possible to solve all the
displacement problems in each CPU. Displacement of the structure is solved by MPIBCAST.
A sparse matrix library called PARDISO is used in every single CPU to handle the sparse
stiffness matrices. In Step, the computation of the stiffness matrix and the force vector at
each sub-domain are conducted by using Eq. (2.14). The localized Lagrange multipliers and
displacement of additional interface nodes are evaluated in Step by using Eq. (2.15). Finally,
the displacement of the total number of degrees of freedom isderived in Step by the Eq. (2.16).
In Step and Step, the computational time is related to the size of stiffness matrix of the entire
system. The size of stiffness matrix is proportional to the total number of degrees of freedom
including both subdomain and Lagrange multipliers. Specifically, the size of stiffness matrix
of subdomain decrease in proportion to the amount of decomposed subdomain, i.e.,K(i)

11
. In

contrast, the size of Boolean matrix, i.e.,K(i)
12

, K(i)
21

andK(i)
22

, increases in proportion to the
number of local Lagrange multipliers to enhance the compatibility of displacement at each
subdomain in Eq. (2.14). In hence, the number of decomposed subdomain and its relevant
local Lagrange multipliers must be carefully considered.

2.2. Formulation of the dynamic analysis. For the dynamic analysis, the following govern-
ing equations are used.

Mq̈t+∆t +Kt+∆tqt+∆t = F extt+∆t

(2.17)



131

The mass matrix is derived from an element shape function(N) in the two- and three-dimensional
finite element:

M =





∫

V

Ns
TNsdV



 (2.18)

The effective stiffness matrix(K
11
)and load vector(Q̂) in each sub-domain are

K
11

=
4

∆t2
M +K (2.19)

Q̂ = M

(

4

∆t2
ü+

4

∆t2
u̇+ u

)

+ f
ext

(2.20)

Newmark-β method is used to extend these for time transient dynamic analysis. It is widely
used in the dynamic response of structures. Newmark-β method is more versatile than the
central difference method and stable in terms of accuracy for the linear structural dynamics.
Additionally, it is simple to implement to the analysis.

The first-order time derivative is solved as follows:

q̇
n+1

= q̇
n
+ (1− γ)∆tq̈

n
+ γ∆tq̈

n+1
(2.21)

Since the acceleration is proportional to time, the extended mean value formulation should be
extended to the second time derivative to obtain the correctdisplacement [10].

q
n+1

= q
n
+∆tq̇

n
+

1

2
∆t2q̈

β
(2.22)

Then, the followings are derived:

q̈
β
= (1− 2β)q̈

n
+ 2βq̈

n+1
0 ≤ β ≤ 1 (2.23)

Newmark-βmethod shows a reasonable value ofγ = 0.5 [10].
The displacement, velocity, acceleration, and external load vectors areq, q̇, q̈ and f

ext
,

respectively. For the constant average method,β = 1/4 [10].

q
n+1

= q
n
+∆tq̇

n
+

1− 2β

2
∆t2q̈

n
+ β∆t2q̈

n+1
(2.24)

q̇
n+1

= q̇
n
+

∆t

2

(

ün + ün+1

)

(2.25)

q̈
n+1

=
4

∆t

(

un+1 − un −∆tu̇n
)

− ün (2.26)
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2.3. Three-dimensional OPT-DKT shell element. In the three-dimensional structural anal-
ysis with parallel computation, the OPT-DKT shell element,which combines the optimal tri-
angle (OPT) membrane element and discrete Kirchhoff plate (DKT) bending element is used.
Felippa [11] developed an optimal triangle element. Each element has 9 degrees of freedom
with a drilling degree of freedom. Batoz et al. [12] showed that the discrete Kirchhoff triangle
(DKT) would be the most reliable element for the analysis of thin plates. Each element has 9
degrees of freedom with a bending degree of freedom. Khosravi [13] developed a new three-
node triangular shell element OPT membrane element and DKT plate bending element. Each
element has 18 degrees of freedom (3 translations and 3 rotation at each node) at each element.
The configuration of the OPT-DKT shell element is shown in Fig. 4.

The nodal displacement vector of the OPT-DKT shell element is represented by{dOPT−DKT}.

{dOPT−DKT} = {u1 ν1 ω1 θx1 θy1 θz1 u2 ν2 ω2 θx2 θy2 θz2 · · · θz3}T (2.27)

The stiffness matrix of the shell element corresponding to the displacement vector{dOPT−DKT}
can be described as follows:

K =

∫

A

BT
◦ D◦B◦dA =

[

K
m

∫

BT
mDeBbdA

∫

BT
b DeBmdA K

b

]

(2.28)

FIGURE 4. Configuration of the OPT-DKT shell element
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3. NUMERICAL RESULTS

3.1. FETI-local static analysis of a cylinder. The three-dimensional FETI-local static struc-
tural analysis is implemented in a parallel computing hardware, using a message-passing inter-
face (MPI). The Table 1 is the details of the present multi-core environment specifications.

TABLE 1. Specifications of the present multi-core environments

Processor Intel R© XeonR© E5-2420
Number of nodes 4
Number of CPU 50
Memory 24.6 GB
OS CentOS 6.5
Memory transfer per second1GB/s

Figure 5 shows the configuration of the three-dimensional static problem.

FIGURE 5. 3-D static FETI-local analysis

The key parameters of the analysis conditions are summarized in Table. 2. The number of
total degrees of freedom is kept to 55,440, whereas the number of CPUs increases from 4 to 48.
To validate the present three-dimensional FETI-local static analysis, the present result is com-
pared with those by using NASTRAN. The Table. 3 is the comparison of the tip displacement
with NASTRAN. The present result is in good agreement with that by NASTRAN, within a
difference as small as 0.9%.

The three-dimensional FETI-local structural analysis is validated in the different number
of the sub-domains. The contour and the displacement are compared. Figure 7 shows the
comparison of the displacement in vertical-direction in terms of the number of the sub-domains.
For each different number of sub-domains, the results show the same contour and displacement.
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TABLE 2. Parameters for the FETI-local static analysis

Classification Value
Young’s modulus [GPa] 210
Thickness [m] 0.2
Poisson’s ratio 0.3
Density 7850
Total tip loads [N] 144×105

Total element 18,432
Total nodes 9,240
Total degrees of freedom 55,440

Therefore, the present three-dimensional FETI-local structural analysis gives the same result
regardless of the number of the sub-domains.

(a) Displacement by NASTRAN analysis (b) Displacement by the present

FIGURE 6. Comparison of the displacement iny-direction

TABLE 3. Tip displacement comparison with NASTRAN

External load NASTRAN Present Discrepancy
1,000KN 0.2152m 0.2154m 0.11%
4,000KN 0.86m 0.868m 0.87%

Figures 8 and 9 show the trend of the computational time and memory usage while increas-
ing the number of CPUs used from 4 to 48. However, the computational time and memory
increase further when more than 48 CPUs are used. This is due to the increased degrees of
freedom as defined in Eq. (2.16). As the number of CPUs increases, the degrees of freedom
for the localized Lagrange multipliers will also increase.In terms of the stiffness matrix of
the entire structure, the size of the matrix is proportionalto the number of degrees of freedom.
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(a) Displacement with (b) Displacement with (c) Displacement with
4 sub-domains 16 sub-domains 48 sub-domains

FIGURE 7. Comparison of the displacement in vertical-direction

Specifically, the computational time in Step increases whenover 48 CPUs are used. This is
because the size of the Boolean matrices, i.e.,K(i)

12
, K(i)

21
andK(i)

22
, which will increase in pro-

portion to the number of local Lagrange multipliers in Eq. (2.14). Hence, the stiffness matrix
of proportionally increased size at each decomposed sub-domain and localized Lagrange mul-
tipliers may increase the total computational time. Therefore, the number of CPUs are needed
to be carefully chosen to be as small as possible for efficientparallel computation. It shows
a 96.6% computational time and memory usage reduction by using 32 CPUs, when compared
with those obtained by using 4 CPUs. Therefore, the present FETI-local method is efficient
in the reduction of computational time and its memory usage in the three-dimensional static
analysis.

FIGURE 8. Scalability trend FIGURE 9. Memory usage trend

3.2. FETI-local static analysis of a launch vehicle engine nozzle. Figure 10 shows the con-
figuration of an engine nozzle, discretized by 120,300 degrees of freedom, i.e., 20,050 nodes
and 40,000 OPT-DKT shell elements.
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TABLE 4. Computational time consumed and percentage distribution

CPUs 4 8 16 32 48
Time
(s)

Percent
(%)

Time
(s)

Percent
(%)

Time
(s)

Percent
(%)

Time
(s)

Percent
(%)

Time
(s)

Percent
(%)

Step I 625 94.3 133 91.6 35.71 87.5 17.4 83 24.7 86
Step II 0 0 0.007 0.01 0.23 0.6 0.5 2.4 0.8 3
Step III 38 5.7 12 8.39 4.8 11.9 3 14.6 3 11
Total 663 145 40.7 20.9 28.5

FIGURE 10. Discretized
engine nozzle with
120,300 degrees of free-
dom

FIGURE 11. FETI-local analysis
under tip loads with fixed bound-
ary condition

NASTRAN is used to validate the proposed FETI-local static analysis under tip loads with
a fixed boundary condition. The parameters for the FETI-local static analysis are presented in
Table 5.

TABLE 5. Parameters for the FETI-local static analysis

Classification Value
Young’s modulus [GPa] 200
Thickness [m] 0.002
Poisson’s ratio 0.3
Total tip loads [N] 1,000,000
Boundary condition All fixed
Total degrees of freedom 120,300
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Due to the limitation in the number of color contours available for both the present analysis
and NASTRAN, Fig. 12 does not provide the exact displacementcontours. However, the
result still shows a good correlated displacement in each direction, when compared with those
obtained by NASTRAN, within less than a 2% difference, as listed in Table 6.

FIGURE 12. Displacement comparison against NASTRAN

TABLE 6. Tip displacement comparison against NASTRAN

Displacement Present NASTRAN Discrepancy (%)
Longitudinal direction [m] 1.12×10−3 1.14×10−3 1.7
Vertical direction [m] 3.15×10−2 3.2×10−2 1.6
Out-of-plane direction [m] -8.63×10−5 -8.78×10−5 1.7

The FETI-local static analysis is implemented in a parallelcomputing hardware. To conduct
an evaluation of the FETI-local analysis, the computational time is compared with those of
various CPUs. With this procedure, the number of degrees of freedom is kept to a total of
120,300, whereas the number of CPUs increases from 4 to 40.

Figures 13 and 14 show the trend of the computational time andmemory usage while in-
creasing the number of CPUs used from 4 to 40. The computational time and memory increase
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when more than 40 CPUs are used. This is due to the increased degrees of freedom, as defined
in Eq. (2.16). As the number of CPUs increases, the degrees offreedom for the localized
Lagrange multipliers will also increase. Therefore, the number of CPUs should be carefully
chosen to be as small as possible for efficient parallel computing. It shows a 94% computational
time and memory usage reduction by using 20 CPUs, when compared with those obtained by
using 4 CPUs. Therefore, the present FETI-local method is efficient for the reduction of com-
putational time and its memory usage in parallel environments.

FIGURE 13. Scalability trend FIGURE 14. Memory usage trend

TABLE 7. Trend of computaional time and memory usage

CPUs 4 8 10 20 40
Computational Time [sec] 2932.75 824.42 569.49 188.42 191.99
Memory Usage [GB] 15.02 2.72 2.65 1.01 1.36

3.3. FETI-local dynamic analysis of a cylinder. Regarding the isotropic cylinder configu-
ration, as shown in Fig. 5, the three-dimensional FETI-local dynamic analysis is conducted.
Table 8 summarizes details of the present multi-core environment specifications. Its improved

TABLE 8. Specifications of the present multi-core environments

Processor Intel R© XeonR© E5-2420
Number of nodes 7
Number of CPU 108
Memory 500 GB
OS CentOS 6.5
Memory transfer per second56GB/s(InfiniBand)
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TABLE 9. Parameters for the FETI-local dynamic analysis

Classification Value
Young’s modulus [GPa] 210
Thickness [m] 0.2
Poisson’s ratio 0.3
Density 7850
Total tip loads [N] 9.6× 105

Total element 18,432
Total nodes 9,240
Total degrees of freedom 55,440
Time step [sec] 0.01

memory transfer capability is used in the present dynamic analysis. Newmark-β method is em-
ployed. The key parameters of the dynamic analysis are summarized in Table. 9. Figure 15 is
the comparison of the present result with ANSYS, for the vertical displacement at the cylinder
tip. The present result is good agreement with that obtainedby ANSYS, within a difference as
small as 0.74% at the peak-to-peak.

FIGURE 15. Comparison of the vertical displacement against ANSYS

Figures 16 and 17 show the trend of the computational time andmemory usage while in-
creasing the number of CPUs used from 4 to 48.

Table 10 summarizes the trend of computational time and memory usage. The computa-
tional time and memory increase further when more than 48 CPUS are used. This is due to
the increased degrees of freedom for the localized Lagrangemultipliers. Additionally for the
computation time in Step, it is affected by the the size of theBoolean matrices, i.e.,K(i)

12
,
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FIGURE 16. Scalability trend FIGURE 17. Memory usage trend

K(i)
21

andK(i)
22

which will increase in proportion to the number of the local Lagrange multipliers
in Eq. (2.14). It shows a 98.5% computational time and memoryusage reduction when using
32 CPUs, when compared with those obtained by using 4 CPUs. Itis expected to obtain better
efficiency in the dynamic analysis with a smaller size of the time step. Therefore, the present
FETI-local method will be efficient in the reduction of computational time and its memory
usage for the three-dimensional static analysis.

TABLE 10. Trend of computational time and memory usage

CPUs 4 8 16 32 48
Computational Time [sec] 850.383 197.9 32.9 12.978 17.15
Memory Usage [GB] 6.538 3.5463 2.11698 0.5713 1.82673

4. CONCLUSIONS

This paper describes the development of three-dimensionalstructural analysis with FETI-
local method. The FETI-local method, is improved decomposition method from original FETI.
The original FETI method consisted of direct solution approach for each of the sub-domain
and iterative solvers for the interface problems. On the other hand, the FETI-local method is
capable to obtain the solutions of each of the sub-domain andinterface problem by applying
the penalty term. The penalty term is added to the constraintproblem and yields the ideal
precondition. The solution procedure is introduced by three steps. At first step, decomposed
stiffness matrices and load vectors are introduced from each CPU. Those terms are assembled
into a root CPU, and localized Lagrange multipliers are calculated in the second step. Finally,
displacement of each sub-domain can be obtained by localized Lagrange multipliers, its stiff-
ness matrices and load vectors in the third step. A sparse direct solver library is used in every
single CPU to handle the sparse stiffness matrices in the first and third step.

The three-dimensional FETI-local static structural analysis is implemented. The present
result is validated in the different number of the sub-domains. The computational time and
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memory usage are compared with various CPUs. The present result shows the decreasing
trend of the computational time and memory usage when increasing the number of CPUs used
from 4 to 32. It shows a 96.6% computational time and memory usage reduction by using 32
CPUs, when compared with those obtained by using 4 CPUs. It isconfirmed the number of
CPUs should be carefully chosen for efficient parallel computing.

The three-dimensional FETI-local dynamic analysis is conducted. The Newmark-β method
is employed to extend the dynamic analysis. The present result is compared with the result
obtained using ANSYS. The present result shows the decreasing trend of the computational
time and memory usage when increasing the number of CPUs usedfrom 4 to 32. It shows a
98.5% computational time and memory usage reduction by using 32 CPUs, when compared
with those obtained by using 4 CPUs. It is expected to improvethe computational efficiency
by combining the advantages of the original FETI method, i.e., FETI-mixed using the mixed
local-global Lagrange multiplier.
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