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ABSTRACT. In this paper, development of the three-dimensional sirat analysis is per-
formed by applying FETI-local method. In the FETI-local imed, the penalty term is added
as a preconditioner. The OPT-DKT shell element is used inptlesent structural analysis.
Newmark# method is employed to conduct the dynamic analysis. Thesitli@ensional
FETI-local static structural analysis is conducted. Thetgor and the displacement of the re-
sults are compared following the different number of sumdms. The computational time and
memory usage are compared with respect to the number of C§dds Tihe three-dimensional
dynamic structural analysis is conducted while applying Flecal method. The present re-
sults show appropriate scalability in terms of the compora time and memory usage. It is
expected to improve the computational efficiency by conmgrihe advantages of the original
FETI method, i.e., FETI-mixed using the mixed local-globagrange multiplier.

1. INTRODUCTION

Recently, the structural components used in the indudigkls have become more com-
plicated and been required to alleviate the computatioost for the structural analysis. For
the structural analysis of a large-sized structure, whahdn enormous number of degrees of
freedom, difficulties in terms of computational time and nogyrhandling were generated.
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One of the most advanced approaches to alleviate such cegh@/finite element tearing and
interconnecting method (FETI). The basic idea of FETI méthas to decompose the relevant
domain into non-overlapping sub-domains and each of theseagsigned to an individual
CPU. And Lagrange multipliers were used to enforce the whighe degrees of freedom to
coincide on the interfaces among the sub-domains [1]. Tiginat FETI method was applied
to a parallel computation algorithm for the second ordetigladifferential equations (PDES)
[2].

Farhat [2] proposed the original FETI method as a parallélefielement computational
method. He solved the local singularity problems of the ilmpsub-domains by using a pseudo
inverse matrix. The original FETI method was extended todin&-primal FETI (FETI-DP)
method, which took standard preconditioned conjugateigna@lgorithm (PCG), which was
not used in the original FETI method. Due to the singularityhe stiffness matrix under the
floating sub-domain, the original FETI method procedure m@sised in the same way for ap-
plication to static and transient dynamic analysis. On therchand, the FETI-DP method was
applicable to both static and dynamic problems [3]. Parks[jgested alternative constraints
modeling method to enforce the continuity of the displaceinfield by using the localized La-
grange multipliers. The local Lagrange multiplier fornmtidas were set about the derivations
of the partitioned equilibrium equations for structure.uBlaau [5-6] proposed an augmented
Lagrangian formulation (ALF) with the use of global and Ibcagrange multipliers. The ap-
plication of augmented Lagrangian terms was shown to imgomnditioning of the flexibility
matrix, and thereby improving the convergence rate of tbeiive procedure used to solve
interface problem. In addition, he reported advanced acyuny adopting localized Lagrange
multipliers as penalty formulations [5].

In this paper the three-dimensional structural analysiagplying FETI-local method will
be developed. The OPT-DKT shell element will be used in thecairal analysis. Newmark-
method will be employed to extend the dynamic analysis. Tineetdimensional FETI-local
static structural analysis will be conducted. The computad time and memory usage will be
compared with respect to the number of CPUs used. The d&plaat results will be compared
while using different number of the sub-domains. The thdimeensional dynamic structural
analysis will be conducted. Finally, the computationaldim terms of the number of CPUs
will be evaluated.

2. FORMULATIONS

2.1. The FETI-local algorithm. In the FETI-local method, the given domain is divided into
non-overlapping sub-domains and each sub-domain is cauguyt a single CPU. The addi-
tional interface nodes are used to define localized displaoé field. Each sub-domain and
additional interface node are connected by local Lagrangjéptiers. The FETI-local method
is a combination of the localized Lagrange multiplier tagie with the augmented Lagrangian
formulation and is ideally reasonable for the large sizecstrral analysis. This method uses
a weighting penalty as a preconditioner unlike the origifall'l method. This new approach
provides an ideal preconditioning of the flexibility matfiy.
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FIGURE 1. Comparison between classical and localized Lagrangtpineds

In the original FETI method, continuity of the displacemerds determined by Lagrange
multipliers directly as Fig. 1. (a). The constraint potahtind constraint condition were
defined as follows:

v.=\C (2.1)

On the other hand, in the FETI-local method, continuity ie tisplacement field is enforced
by imposing additional interface nodes and local Lagrangétiptiers as Fig. 1. (b). The
boundary nodes in each sub-domain are localized with additiinterface nodes, which are
used to construct constraint condition. The constrainemitdl and constraint condition are
defined as follows:

V. = \OToM 4 \@T () (2.3)
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FIGURE 2. Schematic description of FETI-local method

Figure 2 shows the configuration of the connected sub-d@ntirough localized Lagrange
multipliers. The number of additional interface nodé8” is added to the number of internal
nodesuY” at each sub-domain. Hence, the total number of nodes for stotiomain is
defined as follows:



128 S. KIM, J. JOO, H. CHO, AND S. SHIN

a0 = {Q(i)T A(i)T} (2.5)
The total potential energy of the object structure can bemgosed into three components:
II=A+d+V, (2.6)

11 is the total potential energy of the entire structudes the strain energy of the total number
of subdomains and defined as follows:

Zu Tgmu (2.7)

where K = diag (gao) 0 .KW is the stiffness matrix for thé”sub-domain.
= 0 0 =

® is the total potential of the external loads for each sub-@larand defined as follows:
NS . ~ .
== aQw (2.8)
i=1

whereQT = {QWT, 0}. QW7 is the external load for thé" sub-domain.
And V. is the potential of constraints defined by localized Lageamgltipliers.

cl) = El()j) —u (2.9)
Vc(j) = pATCl) 4 gc(j)Tc(j) (2.10)

gl(f)is the boundary nodes witd” position put on additional interface nodes?)is the local-
ized Lagrange multipliers used to enforce the local comgga

In the original FETI method, the interface problem was solieg an iterative method. The
preconditioned conjugate gradient (PCG) algorithm wasd trsethe solution of iteration prob-
lem. Schur complement method was applied for more efficienation. However, the ad-
ditional Lagrange multipliers were needed at the crosstgdointhe stable PCG iteration and
reasonably not scalable for fourth-order plate and shelllpms [3].

On the other hand, in the FETI-local method, the penalty otk used. The penalty term
p is the scaling factor for the local Lagrange multiplier. T$econd term of Eq. (2.10) is
characteristic of the penalty method. The penalty terplays a role as stiffness of a spring
placed between the sub-domains, and Lagrange multiplierseaction forces that impose the
continuity of the displacement field along the boundary sodhe penalty method yields an
exact solution if the penalty tends to infinity, but othemvigermits certain violations of the
constraint that the interpenetration has to be zero. It¢esgary to estimate the magnitude of

the penalty parameter to limit the penetration [8]. Finarhﬁggj)can be obtained by adding the

penalty term for problem with equality constraints in Eq.1(®. Further details are expressed
in Ref. 10.
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To satisfy the array in Eq. (2.5), the generalized stiffmassrix and force vector can be de-
composed into the boundary nodes and its additional irtenf@des at each sub-domain. Ad-
ditionally, i(ﬂ) is the force vector in thg-th interconnecting point at an arbitrary sub-domain,

andk!) is the stiffness matrix of the boundary nodes [1].

' AG) 4 ) oV
F0) = £V pam TP P2 (2.11)
< X9 (- ) 6) '
c —pA® —pc}

, G) ) pL plL —pL
KO = [éz@) éf(»;) ] —|pl 0 I (2.12)
Ky K -pL —pl pl

To assemble both the force vector and stiffness matrix iaithesub-domain, the Boolean
matrix égj)is used to connect the sub-domain boundary nodes directlyetglobal nodes.
Index (.), and (.). denote DOFs related to boundary and interface nodes, tasgde¢l]. More
information about the Boolean matrices is provided in [9].

Finally, the governing equation of the structure could biinéel as follows:

s e (1) i 7 A £
S E K DK e,
)T = (2.13)
Z Kbc Zz é’1 Kglc _ic
Three computational algorithms are utilized to solve EqLER
In the first step, a temporary stiffness matrix and forceaseate created.

IS I [~

K, K } { u } Q-f
=11 =12 = L0 =" (2.14)
[ K, Ky e { _ib
N ‘ N
wherek () — z (B9TDYBY +pB"), K z pBYT, K = z pBY
The Iocallzed Lagrange multipliers are evaluated in thené(step
=K f_ (2.15)
whereK* =K, —- K K 'K ., [*=-fi-K K Q- f)
Finally, the dlsplacement of the total number of degreesse:ddom is derived.
i=K;! {Q ~ B, _gugg} (2.16)

Figure 3 shows the three steps for the present parallel ctatiu algorithm. At first, the
full geometry is decomposed into the number of sub-domaynsléssage Passing Interface
(MPI). In Step |, Boolean matrices are defined to connect Bagnnodes to interface nodes,
and define the stiffness matrix and force vector in each subaéh. In this procedure, each
sub-domain is calculated in each CPU. To solve the interfaoblems, the assembling of
the stiffness matrix and force vectors of each sub-domain time full stiffness matrix and
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Decomposition

Step 1

= Read full geometry

» Decompose the domain into 2 number of
sub-domains

«  Assemble Boolean matrix

» Define each sub-domain stiffness matrix and
force vector using sparse linear solver
(PARDISO)

- Possible to parallelization

Step 11

Steplll

= Assemble stiffhess matrix of interface nodes

» Assemble force vector interface nodes
= Solve the interface problems using sparse
linear solver (PARDISO)

= Send the DOFs of interface nodes to all other
processes

= Solve the displacement of each subdomains
- Possible to parallelization

FIGURE 3. Three steps in the present parallel computing algorithm

force vector, is required. Finally, all the degrees of fiwed of interface nodes are used to
solve the displacement of each sub-domain. In the third, step possible to solve all the
displacement problems in each CPU. Displacement of thetstelis solved by MPBCAST.

A sparse matrix library called PARDISO is used in every ®n@lPU to handle the sparse
stiffness matrices. In Step, the computation of the st#neatrix and the force vector at
each sub-domain are conducted by using Eq. (2.14). TheizedalLagrange multipliers and
displacement of additional interface nodes are evaluat&tap by using Eq. (2.15). Finally,
the displacement of the total number of degrees of freedatarised in Step by the Eq. (2.16).
In Step and Step, the computational time is related to tredistiffness matrix of the entire
system. The size of stiffness matrix is proportional to thtaltnumber of degrees of freedom
including both subdomain and Lagrange multipliers. Speddifj, the size of stiffness matrix
of subdomain decrease in proportion to the amount of deceathsubdomain, i.eE ). In

contrast, the size of Boolean matrix, |§,§’2) ggl)andggz), increases in proportion to the
number of local Lagrange multipliers to enhance the corbpidyi of displacement at each
subdomain in Eg. (2.14). In hence, the number of decompaskedosnain and its relevant

local Lagrange multipliers must be carefully considered.

2.2. Formulation of the dynamic analysis. For the dynamic analysis, the following govern-
ing equations are used.

MGHAL 4 AL AL _ eatttAt (2.17)
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The mass matrix is derived from an element shape fun¢fionin the two- and three-dimensional
finite element:

M= [ N"Nyv (2.18)
\%4

The effective stiffness matrig,  )and load vectofQ) in each sub-domain are

4
K, = Atz%"'é (2.19)
A 4 . 4.
Q = ﬂ EQ"F m@"ﬁ‘y +iem (220)

Newmark$ method is used to extend these for time transient dynamigsisalt is widely
used in the dynamic response of structures. Newrgankethod is more versatile than the
central difference method and stable in terms of accuracyhfo linear structural dynamics.
Additionally, it is simple to implement to the analysis.

The first-order time derivative is solved as follows:

Gy = 4, T A=A, + AL, (2.21)

Since the acceleration is proportional to time, the extdndean value formulation should be
extended to the second time derivative to obtain the codisptacement [10].

. 1.
Then, the followings are derived:
gﬁ =(1-28)¢, + 2ﬁgn+1 0<p<1 (2.23)

Newmarkfmethod shows a reasonable valueye 0.5 [10].
The displacement, velocity, acceleration, and exterreud leectors are, q, G andim,

respectively. For the constant average metfioe, 1/4 [10].

L 1=28 . .
0,41 = 9, + At + ——APG, + AL, (2.24)
. . At .. .
Gy = 4, + 5 (i + 1) (2.25)
. 4 o
gn+1 = E (Qn—i-l - Uy — Atﬂn) — Uy (226)
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2.3. Three-dimensional OPT-DKT shell element.In the three-dimensional structural anal-
ysis with parallel computation, the OPT-DKT shell elememlich combines the optimal tri-
angle (OPT) membrane element and discrete Kirchhoff plakeT) bending element is used.
Felippa [11] developed an optimal triangle element. Eaemeht has 9 degrees of freedom
with a drilling degree of freedom. Batoz et al. [12] showedtttine discrete Kirchhoff triangle
(DKT) would be the most reliable element for the analysishiri plates. Each element has 9
degrees of freedom with a bending degree of freedom. Khgtaydeveloped a new three-
node triangular shell element OPT membrane element and D&& pending element. Each
element has 18 degrees of freedom (3 translations and ®rotdteach node) at each element.
The configuration of the OPT-DKT shell element is shown in Big

The nodal displacement vector of the OPT-DKT shell elenergpresented byl pr_ prcr}-

{dopr—prr} = {w1 v1w10:10y1 00 u2 V2w2 0220202 - 023}T (2.27)

The stiffness matrix of the shell element correspondingedalisplacement vectti; pr_ pxr}
can be described as follows:

K = I'DoBodA = | 7™ f@m 2.28
z_/":” = | /B D°BndA K, (2.28)
4 —b — W
Uy
vy
wq
exl
1 O Us
u | b= V3
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v, : W3
Wz o 9x3
91’2 9y3
eyZ 923
0,2 | K Y.V

FIGURE 4. Configuration of the OPT-DKT shell element
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3. NUMERICAL RESULTS

3.1. FETI-local static analysis of a cylinder. The three-dimensional FETI-local static struc-
tural analysis is implemented in a parallel computing handyusing a message-passing inter-
face (MPI). The Table 1 is the details of the present multe@nvironment specifications.

TABLE 1. Specifications of the present multi-core environments

Processor Intel® XeonR) E5-2420
Number of nodes 4

Number of CPU 50

Memory 24.6 GB

oS CentOS 6.5

Memory transfer per secondlGB/s

Figure 5 shows the configuration of the three-dimensioraicsproblem.

Sm

FIGURE 5. 3-D static FETI-local analysis

The key parameters of the analysis conditions are sumndairiz€able. 2. The number of
total degrees of freedom is kept to 55,440, whereas the nuofk#Us increases from 4 to 48.
To validate the present three-dimensional FETI-localestatalysis, the present result is com-
pared with those by using NASTRAN. The Table. 3 is the congoariof the tip displacement
with NASTRAN. The present result is in good agreement witt thy NASTRAN, within a
difference as small as 0.9%.

The three-dimensional FETI-local structural analysisasidated in the different number
of the sub-domains. The contour and the displacement ar@paat. Figure 7 shows the
comparison of the displacement in vertical-direction inmrte of the number of the sub-domains.
For each different number of sub-domains, the results shewwame contour and displacement.
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TABLE 2. Parameters for the FETI-local static analysis

Classification Value
Young's modulus [GPa] 210
Thickness [m] 0.2
Poisson’s ratio 0.3
Density 7850
Total tip loads [N] 144 x10°
Total element 18,432
Total nodes 9,240
Total degrees of freedom | 55,440

Therefore, the present three-dimensional FETI-localcttiral analysis gives the same result
regardless of the number of the sub-domains.

T

dijmj:. 0 dJO0: O.F R13 42 03 D3

(a) Displacement by NASTRAN analysis (b) Displacement eyghesent

FIGURE 6. Comparison of the displacementjfdirection

TABLE 3. Tip displacement comparison with NASTRAN

External load | NASTRAN Present Discrepancy
1,000KN 0.2152m 0.2154m 0.11%
4,000KN 0.86m 0.868m 0.87%

Figures 8 and 9 show the trend of the computational time andangusage while increas-
ing the number of CPUs used from 4 to 48. However, the comiputttime and memory
increase further when more than 48 CPUs are used. This isodilie tincreased degrees of
freedom as defined in Eq. (2.16). As the number of CPUs inessdke degrees of freedom
for the localized Lagrange multipliers will also increade.terms of the stiffness matrix of
the entire structure, the size of the matrix is proportidnahe number of degrees of freedom.
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(a) Displacement with (b) Displacement with (c) Displaceingith
4 sub-domains 16 sub-domains 48 sub-domains

FIGURE 7. Comparison of the displacement in vertical-direction

Specifically, the computational time in Step increases wihar 48 CPUs are used. This is
because the size of the Boolean matrices,gé@, ggl)andggg, which will increase in pro-
portion to the number of local Lagrange multipliers in Eq.1@). Hence, the stiffness matrix
of proportionally increased size at each decomposed sotaitioand localized Lagrange mul-
tipliers may increase the total computational time. Thaeefthe number of CPUs are needed
to be carefully chosen to be as small as possible for effipardllel computation. It shows
a 96.6% computational time and memory usage reduction Img 82 CPUs, when compared
with those obtained by using 4 CPUs. Therefore, the presgmi-focal method is efficient
in the reduction of computational time and its memory usagthé three-dimensional static
analysis.

(]
5800 . . =5
g |—Computat|onal Tlme[s]\ g15 \—Memory Usage[GBﬂ
600 T
® o910t
= %
64007 g
e 5
é 200 E
o 0 : ‘ ; ; 20 : : : : )
O 0 10 20 30 40 50 0 10 20 30 40 50
Number of CPUs Number of CPUs
FIGURE 8. Scalability trend FIGURE 9. Memory usage trend

3.2. FETI-local static analysis of a launch vehicle engine nozel Figure 10 shows the con-
figuration of an engine nozzle, discretized by 120,300 degod freedom, i.e., 20,050 nodes
and 40,000 OPT-DKT shell elements.
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TABLE 4. Computational time consumed and percentage distribbutio

CPUs |4 8 16 32 48
Time | PercentTime | PercentTime | PercentTime | PercentTime | Percent
(s) () [(5) () (5 () [(5) [(%) [(5 |
Stepl [ 625 |94.3 |133 [91.6 |35.71/875 |17.4 |83 24.7 | 86
Stepll | O 0 0.007/0.01 |0.23 | 0.6 0.5 2.4 0.8 3
Step Il | 38 5.7 12 8.39 (4.8 11.9 |3 146 |3 11
Total 663 145 40.7 20.9 28.5

FIGURE 10. Discretized

engine

dom

nozzle with
120,300 degrees of free-

Fixed Boundary

1

External load

FIGURE 11. FETI-local analysis
under tip loads with fixed bound-
ary condition

NASTRAN is used to validate the proposed FETI-local statialgsis under tip loads with
a fixed boundary condition. The parameters for the FET lHlstzic analysis are presented in

Table 5.

TABLE 5. Parameters for the FETI-local static analysis

Classification Value
Young’'s modulus [GPa] | 200
Thickness [m] 0.002
Poisson’s ratio 0.3

Total tip loads [N] 1,000,000
Boundary condition All fixed
Total degrees of freedom| 120,300
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Due to the limitation in the number of color contours avdiafor both the present analysis
and NASTRAN, Fig. 12 does not provide the exact displacencentours. However, the
result still shows a good correlated displacement in eagttion, when compared with those
obtained by NASTRAN, within less than a 2% difference, agtiin Table 6.

Displacement Present NASTRAN

Longitudinal
-direction

Vertical-
direction

Out-of-plane-
direction

FIGURE 12. Displacement comparison against NASTRAN

TABLE 6. Tip displacement comparison against NASTRAN

Displacement Present NASTRAN | Discrepancy (%)
Longitudinal direction [m] | 1.12x1073 | 1.14x10=3 | 1.7
Vertical direction [m] 3.15x107% [3.2x107%2 | 1.6
Out-of-plane direction [m] | -8.63x10~° | -8.78x10~° | 1.7

The FETI-local static analysis is implemented in a paralighputing hardware. To conduct
an evaluation of the FETI-local analysis, the computafidimae is compared with those of
various CPUs. With this procedure, the number of degreeseefdbm is kept to a total of
120,300, whereas the number of CPUs increases from 4 to 40.

Figures 13 and 14 show the trend of the computational timenagichory usage while in-
creasing the number of CPUs used from 4 to 40. The compugtiione and memory increase
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when more than 40 CPUs are used. This is due to the increageskdeof freedom, as defined
in Eq. (2.16). As the number of CPUs increases, the degre&gerdom for the localized

Lagrange multipliers will also increase. Therefore, thenber of CPUs should be carefully
chosen to be as small as possible for efficient parallel cdmgpult shows a 94% computational
time and memory usage reduction by using 20 CPUs, when ceupdth those obtained by
using 4 CPUs. Therefore, the present FETI-local methodiisexit for the reduction of com-

putational time and its memory usage in parallel envirorisien
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FIGURE 13. Scalability trend
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FIGURE 14. Memory usage trend

TABLE 7. Trend of computaional time and memory usage

CPUs 4 8 10 20 40
Computational Time [sec] | 2932.75| 824.42| 569.49| 188.42| 191.99
Memory Usage [GB] 1502 |272 |265 |1.01 |1.36

3.3. FETI-local dynamic analysis of a cylinder. Regarding the isotropic cylinder configu-
ration, as shown in Fig. 5, the three-dimensional FETHlayamamic analysis is conducted.
Table 8 summarizes details of the present multi-core enmient specifications. Its improved

TABLE 8. Specifications of the present multi-core environments

Processor Intel® XeonR E5-2420
Number of nodes 7

Number of CPU 108

Memory 500 GB

(O CentOS 6.5

Memory transfer per secondb6GB/s(InfiniBand)
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TABLE 9. Parameters for the FETI-local dynamic analysis

Classification Value
Young’s modulus [GPa] 210
Thickness [m] 0.2
Poisson’s ratio 0.3
Density 7850
Total tip loads [N] 9.6 x 10°
Total element 18,432
Total nodes 9,240
Total degrees of freedom | 55,440
Time step [sec] 0.01

memory transfer capability is used in the present dynamadyais. Newmarks method is em-
ployed. The key parameters of the dynamic analysis are suizgdan Table. 9. Figure 15 is
the comparison of the present result with ANSYS, for theigalrdisplacement at the cylinder
tip. The present result is good agreement with that obtaiye@INSY S, within a difference as
small as 0.74% at the peak-to-peak.

0.15 "|—Prasant
v AMNEYS
B
%’ 0.
=
£
E.U.I]ﬁ
=
l] L L L
0 1 2 3 4 5

Time[zec]
FIGURE 15. Comparison of the vertical displacement against ANSYS

Figures 16 and 17 show the trend of the computational timenagwhory usage while in-
creasing the number of CPUs used from 4 to 48.

Table 10 summarizes the trend of computational time and memsage. The computa-
tional time and memory increase further when more than 48 £Rit¢ used. This is due to
the increased degrees of freedom for the localized Lagraemgtpliers. Additionally for the

computation time in Step, it is affected by the the size of Bowlean matrices, i.eég,
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KW andK!) which will increase in proportion to the number of the localgrange multipliers
in Eq. (2.14). It shows a 98.5% computational time and merasage reduction when using
32 CPUs, when compared with those obtained by using 4 CPligsexpected to obtain better
efficiency in the dynamic analysis with a smaller size of iheetstep. Therefore, the present
FETI-local method will be efficient in the reduction of contational time and its memory

usage for the three-dimensional static analysis.

TABLE 10. Trend of computational time and memory usage

CPUs 4 8 16 32 48
Computational Time [sec] | 850.383| 197.9 | 32.9 12.978| 17.15
Memory Usage [GB] 6.538 | 3.5463| 2.11698| 0.5713| 1.82673

4. CONCLUSIONS

This paper describes the development of three-dimensginadtural analysis with FETI-
local method. The FETI-local method, is improved decontmmsimethod from original FETI.
The original FETI method consisted of direct solution apiofor each of the sub-domain
and iterative solvers for the interface problems. On themtiand, the FETI-local method is
capable to obtain the solutions of each of the sub-domainragedace problem by applying
the penalty term. The penalty term is added to the constpwtllem and yields the ideal
precondition. The solution procedure is introduced byelsteps. At first step, decomposed
stiffness matrices and load vectors are introduced frorh €. Those terms are assembled
into a root CPU, and localized Lagrange multipliers areuwated in the second step. Finally,
displacement of each sub-domain can be obtained by loddliagrange multipliers, its stiff-
ness matrices and load vectors in the third step. A sparsetdiolver library is used in every
single CPU to handle the sparse stiffness matrices in theaficsthird step.

The three-dimensional FETI-local static structural asiglys implemented. The present
result is validated in the different number of the sub-demaiThe computational time and
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memory usage are compared with various CPUs. The preserit sbows the decreasing
trend of the computational time and memory usage when istrgahe number of CPUs used
from 4 to 32. It shows a 96.6% computational time and memoageseduction by using 32
CPUs, when compared with those obtained by using 4 CPUs.ctiriirmed the number of
CPUs should be carefully chosen for efficient parallel cotimgu

The three-dimensional FETI-local dynamic analysis is cmteld. The Newmarl- method
is employed to extend the dynamic analysis. The presentt iestcompared with the result
obtained using ANSYS. The present result shows the deagasind of the computational
time and memory usage when increasing the number of CPUsfrged! to 32. It shows a
98.5% computational time and memory usage reduction bygu@nCPUs, when compared
with those obtained by using 4 CPUs. It is expected to imptheecomputational efficiency
by combining the advantages of the original FETI method, FETI-mixed using the mixed
local-global Lagrange multiplier.
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