• 제목/요약/키워드: Dijkstra's shortest path

검색결과 41건 처리시간 0.027초

Design and Implementation of Indoor Positioning & Shortest Path Navigation System Using GPS and Beacons in Narrow Buildings

  • Sang-Hyeon, Park;Huhnkuk, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • 제28권3호
    • /
    • pp.11-16
    • /
    • 2023
  • As techniques for indoor positioning, fingerprinting, indoor positioning method using trilateration, and utilizing information obtained from equipments by Wi-Fi/Bluetooth, etc are common and representative methods to specify the user's indoor position. However, in these methods, an indoor space should be provided with enough space to install a large number of equipment (AP, Beacon). In this paper, we propose a technique that can express the user's location within a building by simultaneously using the GPS signal and the signal transmitted from the beacon in a building structure where the conventional method cannot be applied, such as a narrow building. A shortest path search system was designed and implemented by applying the Dijkstra Algorithm, one of the most representative and efficient shortest path search algorithms for shortest path search. The proposed technique can be considered as one of the methods for measuring the user's indoor location considering the structural characteristics of a building in the future.

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle based on 3-dimensional Environment (3차원 환경 기반 무인 항공기 생존성 극대화를 위한 이동 경로 계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • 제24권4호
    • /
    • pp.304-313
    • /
    • 2011
  • An Unmanned Aerial Vehicle(UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are currently employed in many military missions(surveillance, reconnaissance, communication relay, targeting, strike etc.) and a number of civilian applications(communication service, broadcast service, traffic control support, monitoring, measurement etc.). For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is the path planning to maximize survivability for UAV based on 3-dimensional environment. A mathematical programming model is suggested by using MRPP(Most Reliable Path Problem) and solved by transforming MRPP into SPP(Shortest Path Problem). This study also suggests a $A^*PS$ algorithm based on 3-dimensional environment to UAV's path planning. According to comparison result of the suggested algorithm and SPP algorithms (Dijkstra, $A^*$ algorithm), the suggested algorithm gives better solution than SPP algorithms.

Route Optimization for Emergency Evacuation and Response in Disaster Area (재난지역에서의 대피·대응 동시수행을 위한 다중목적 긴급대피경로 최적화)

  • Kang, Changmo;Lee, Jongdal;Song, Jaejin;Jung, Kwangsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제34권2호
    • /
    • pp.617-626
    • /
    • 2014
  • Lately, losses and damage from natural disasters have been increasing. Researchers across various fields in Korea are trying to come up with a response plan, but research for evacuation plans is still far from satisfactory. Hence this paper proposes a model that could find an optimized evacuation route for when disasters occur over wide areas. Development of the model used methods including the Dijkstra shortest path algorithm, feasible path method, genetic algorithm, and pareto efficiency. Computations used parallel computing (SPMD) for high performance. In addition, the developed model is applied to a virtual network to check the validity. Finally the adaptability of the model is verified on a real network by computating for Gumi 1stNational Industrial Complex. Computation results proved that this model is valid and applicable by comparison of the fitness values for before optimization and after optimization. This research can contribute to routing for responder vehicles as well as planning for evacuation by objective when disasters occur.

Shortest Path Search Scheme with a Graph of Multiple Attributes

  • Kim, Jongwan;Choi, KwangJin;Oh, Dukshin
    • Journal of the Korea Society of Computer and Information
    • /
    • 제25권12호
    • /
    • pp.135-144
    • /
    • 2020
  • In graph theory, the least-cost path is discovered by searching the shortest path between a start node and destination node. The least cost is calculated as a one-dimensional value that represents the difference in distance or price between two nodes, and the nodes and edges that comprise the lowest sum of costs between the linked nodes is the shortest path. However, it is difficult to determine the shortest path if each node has multiple attributes because the number of cost types that can appear is equal to the number of attributes. In this paper, a shortest path search scheme is proposed that considers multiple attributes using the Euclidean distance to satisfy various user requirements. In simulation, we discovered that the shortest path calculated using one-dimensional values differs from that calculated using the Euclidean distance for two-dimensional attributes. The user's preferences are reflected in multi attributes and it was different from one-dimensional attribute. Consequently, user requirements could be satisfied simultaneously by considering multiple attributes.

A Fast Algorithm for Shortest Path Problem for Network with Turn Penalities and Prohibitions (교차로 제약과 지연이 있는 네트워크에서 최단경로탐색)

  • 박찬규;박순달;진희채
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • 제23권3호
    • /
    • pp.17-26
    • /
    • 1998
  • Shortest path problem in road network with turn penalties and prohibitions frequently arises from various transportation optimization models. In this paper, we propose a new algorithm for the shortest Path problem with turn prohibitions and delays. The proposed algorithm maintains distance labels of arcs, which is similar to labels of nodes of Dijkstra's algorithm. Fibonacci heap implementation of the proposed algorithm solves the problem in O(mn + mlogm). We provide a new insight in transforming network with turn penalties and prohibitions into another network in which turn penalties and prohibitions are implicitly considered. The proposed algorithm is implemented using new data structure and compared with Ziliaskopoulos' algorithm. Computational results show that the proposed algorithm is very efficient.

  • PDF

A Border Line-Based Pruning Scheme for Shortest Path Computations

  • Park, Jin-Kyu;Moon, Dae-Jin;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권5호
    • /
    • pp.939-955
    • /
    • 2010
  • With the progress of IT and mobile positioning technologies, various types of location-based services (LBS) have been proposed and implemented. Finding a shortest path between two nodes is one of the most fundamental tasks in many LBS related applications. So far, there have been many research efforts on the shortest path finding problem. For instance, $A^*$ algorithm estimates neighboring nodes using a heuristic function and selects minimum cost node as the closest one to the destination. Pruning method, which is known to outperform the A* algorithm, improves its routing performance by avoiding unnecessary exploration in the search space. For pruning, shortest paths for all node pairs in a map need to be pre-computed, from which a shortest path container is generated for each edge. The container for an edge consists of all the destination nodes whose shortest path passes through the edge and possibly some unnecessary nodes. These containers are used during routing to prune unnecessary node visits. However, this method shows poor performance as the number of unnecessary nodes included in the container increases. In this paper, we focus on this problem and propose a new border line-based pruning scheme for path routing which can reduce the number of unnecessary node visits significantly. Through extensive experiments on randomly-generated, various complexity of maps, we empirically find out optimal number of border lines for clipping containers and compare its performance with other methods.

Minimum Energy Cooperative Path Routing in All-Wireless Networks: NP-Completeness and Heuristic Algorithms

  • Li, Fulu;Wu, Kui;Lippman, Andrew
    • Journal of Communications and Networks
    • /
    • 제10권2호
    • /
    • pp.204-212
    • /
    • 2008
  • We study the routing problem in all-wireless networks based on cooperative transmissions. We model the minimum-energy cooperative path (MECP) problem and prove that this problem is NP-complete. We hence design an approximation algorithm called cooperative shortest path (CSP) algorithm that uses Dijkstra's algorithm as the basic building block and utilizes cooperative transmissions in the relaxation procedure. Compared with traditional non-cooperative shortest path algorithms, the CSP algorithm can achieve a higher energy saving and better balanced energy consumption among network nodes, especially when the network is in large scale. The nice features lead to a unique, scalable routing scheme that changes the high network density from the curse of congestion to the blessing of cooperative transmissions.

A study on the search for the shortest evacuation route due to flash floods in the recreation forest (휴양림 내 돌발홍수로 인한 최단 대피 경로 탐색 연구)

  • Jeon, Sungwoo;Kim, Minkyu;Choi, Dongwoo;Lee, Seojun;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.494-497
    • /
    • 2022
  • Recently, the damage caused by flash floods caused by extreme weather due to global warming is increasing. In order to reduce the damage, this paper conducted a study on the search for the shortest route of an evacuation route due to a flash flood. For this, we implemented a route search system using GIS and shape files including buildings and roads and Dijkstra's algorithm. In this study, the location of users close to the point where the flash flood occurs is identified, and the evacuation route is searched from the starting point to the destination point without passing through the dangerous point. Evacuate out of the test bed, or designate a building in the test bed as an evacuation shelter, and search for a route to the nearest evacuation shelter. Accordingly, it is expected that human damage will be reduced by providing the shortest evacuation route.

  • PDF

Development of Shortest Path Searching Network Reduction Algorithm (최단경로 탐색영역 축소 알고리즘 개발)

  • Ryu, Yeong-Geun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제12권2호
    • /
    • pp.12-21
    • /
    • 2013
  • This study developed searching network reduction algorithm for reduce shortest path searching time. Developed algorithm is searching nodes that have the including possibility of less weights path than temporal path that consists minimum number of nodes and minimum sum of the straight line distances. The node that has the including possibility of shortest path is the node that the sum of straight line distance from start node and straight line distance to target node is less than the value that temporary path's weights divided by minimum weights units. If searching network reconstitutes only these nodes, the time of shortest path searching will be reduced. This developed algorithm has much effectiveness that start node and target node is close in large network.

Development of Augmented Reality Walking Navigation App using Dijkstra Algorithm

  • Jeong, Cho-Hui;Lee, Myung-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • 제22권2호
    • /
    • pp.89-95
    • /
    • 2017
  • There are a variety of apps that are finding their way. And in car navigation, we launched a product that reflects Augmented Reality technology this year. However, existing apps have problems. It is implemented in 2D or 3D, has a large error range because it has been modified in most vehicles, is not updated in real time, and car augmented reality navigation is a vehicle, and a separate device is required, etc. In this study, we implemented a smartphone app for walking directions using augmented reality, and made it possible to intuitively use a route service from a user 's location to a destination. The Dijkstra algorithm is applied to calculate the shortest path to solve the problem of finding the route with the least cost. By using this application, it is possible to use the route search service even in a data-free environment, to solve the inconvenience of the language barrier, and to update in real time, so that the latest information can be always maintained. In the future, we want to develop an app that can be commercialized by using a character in the path to promote it.