• Title/Summary/Keyword: Digital-to-Analog actuators

Search Result 7, Processing Time 0.027 seconds

High-Accuracy Digital-to-Analog Actuators Using Load Springs Compensating Fabrication Errors (제조공정 오차보상용 보정 탄성체를 이용한고정도 디지털-아날로그 구동기)

  • Han, Won;Lee, Won-Chul;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.823-830
    • /
    • 2008
  • We present a high-accuracy digital-to-analog (DA) actuator using a load spring, specially designed to compensate the output displacement errors caused by fabrication errors. The compensated linear DA actuator is capable to change the slope of input-output modulation line in order to compensate fabrication errors. We design, fabricate, and characterize three different prototypes: one uncompensated design and two compensated designs respectively for a specific value and for a given range of fabrication error. The compensated linear DA actuators show the output displacement errors of $-0.20{\pm}0.23{\mu}m\;and\;-0.13{\pm}0.18{\mu}m$, respectively, reduced by 64.3% and 76.8% of the output displacement error, $0.56{\pm}0.20{\mu}m$, produced by the conventional uncompensated linear DA actuator. We experimentally verify the fabrication error compensation capability of the present compensated linear DA actuators, thus demonstrating high-accuracy actuation performance immune to fabrication errors.

High-Q Micromechanical Digital-to-Analog Variable Capacitors Using Parallel Digital Actuator Array (병렬 연결된 다수의 디지털 구동기를 이용한 High-Q 디지털-아날로그 가변 축전기)

  • Han, Won;Cho, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.137-146
    • /
    • 2009
  • We present a micromechanical digital-to-analog (DA) variable capacitor using a parallel digital actuator array, capable of accomplishing high-Q tuning. The present DA variable capacitor uses a parallel interconnection of digital actuators, thus achieving a low resistive structure. Based on the criteria for capacitance range ($0.348{\sim}1.932$ pF) and the actuation voltage (25 V), the present parallel DA variable capacitor is estimated to have a quality factor 2.0 times higher than the previous serial-parallel DA variable capacitor. In the experimental study, the parallel DA variable capacitor changes the total capacitance from 2.268 to 3.973 pF (0.5 GHz), 2.384 to 4.197 pF (1.0 GHz), and 2.773 to 4.826 pF (2.5 GHz), thus achieving tuning ratios of 75.2%, 76.1%, and 74.0%, respectively. The capacitance precisions are measured to be $6.16{\pm}4.24$ fF (0.5 GHz), $7.42{\pm}5.48$ fF (1.0 GHz), and $9.56{\pm}5.63$ fF (2.5 GHz). The parallel DA variable capacitor shows the total resistance of $2.97{\pm}0.29\;{\Omega}$ (0.5 GHz), $3.01{\pm}0.42\;{\Omega}$ (1.0 GHz), and $4.32{\pm}0.66\;{\Omega}$ (2.5 GHz), resulting in high quality factors which are measured to be $33.7{\pm}7.8$ (0.5 GHz), $18.5{\pm}4.9$ (1.0 GHz), and $4.3{\pm}1.4$ (2.5 GHz) for large capacitance values ($2.268{\sim}4.826$ pF). We experimentally verify the high-Q tuning capability of the present parallel DA variable capacitor, while achieving high-precision capacitance adjustments.

Active Vibration Suppression of Smart Structures using a Modified LQG Controller (수정 LQG 제어기를 이용한 지능 구조물의 능동진동제어)

  • 신태식;곽문규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.664-669
    • /
    • 1998
  • This research is concerned with the active vibration controller design for smart structures by a modified LQG controller. The smart structure is defined as the structure equipped with smart actuators and sensors. Various analog and digital control, techniques aimed for the piezoceramic sensors and actuators have been proposed for the active vibration control of smart structures. In this paper, the modified LQG controller is developed for the active vibration suppression of smart structures to implement the predefined decay rate on modal displacements. The proposed modified LQG controller proved its effectiveness by experiments.

  • PDF

Single-Chip Controller Design for Piezoelectric Actuators using FPGA (FPGA를 이용한 압전소자 작동기용 단일칩 제어기 설계)

  • Yoon, Min-Ho;Park, Jungkeun;Kang, Taesam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.513-518
    • /
    • 2016
  • The piezoelectric actuating device is known for its large power density and simple structure. It can generate a larger force than a conventional actuator and has also wide bandwidth with fast response in a compact size. To control the piezoelectric actuator, we need an analog signal conditioning circuit as well as digital microcontrollers. Conventional microcontrollers are not equipped with an analog part and need digital-to-analog converters, which makes the system bulky compared with the small size of piezoelectric devices. To overcome these weaknesses, we are developing a single-chip controller that can handle analog and digital signals simultaneously using mixed-signal FPGA technology. This gives more flexibility than traditional fixed-function microcontrollers, and the control speed can be increased greatly due to the parallel processing characteristics of the FPGA. In this paper, we developed a floating-point multiplier, PWM generator, 80-kHz power control loop, and 1-kHz position feedback control loop using a single mixed-signal FPGA. It takes only 50 ns for single floating-point multiplication. The PWM generator gives two outputs to control the charging and discharging of the high-voltage output capacitor. Through experimentation and simulation, it is demonstrated that the designed control loops work properly in a real environment.

Digital Variable Focal Liquid Lens (초점 조절이 가능한 디지털 유체 렌즈)

  • Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.557-560
    • /
    • 2010
  • We have designed a digital variable-focal-length liquid lens by using 4-bit actuators. Each bit actuator consists of 1, 2, 4, and 8 unit actuators, squeezes discrete fluidic volume of $2^4$ different levels into the lens The 4-bit digital actuation mode ($b_4b_3b_2b_1$) affords $2_4$ different lens curvatures and focal lengths. The on/off control of the bit actuators helps in solving the main problem associated with analog liquid lenses, i.e., precise control of the pressure or volume of the fluid for changing the lens curvature and focal length. Experimentally, it has been found that the 4-bit actuators allow 0.074 nl (${\pm}0.02\;nl$) of the given fluid per bit to enter the lens and help in increasing the focal length from 3.63 mm to 38.6 mm in $2^4$ different levels; no high-cost controllers are required for precise control of the pressure or volume in this case. Therefore, the present digital liquid lens is more suitable to integrated optical systems by reducing additional component for pressure and volume control.

JOINT POSITION COMTROL SYSTEM FOR FARA ROBOTS OF SAMSUNG ELECTROICS

  • Kim, Hyo-Kyu;Kim, Dong-Il;Kim, Sungkuwn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.913-916
    • /
    • 1990
  • In this paper, attempts have been made to control AC synchronous servo motor used as actuators of joints of the FARA robot with high dynamic performance and precise positioning. The AC synchronous servo motors used in FARA robots have resolves as position sensors. Resolver to digital converters are used in order to obtain the information of rotor speed and position from resolver outputs. The proposed joint position control system consists of four speed controller and one position controller. Analog methods are used in the position controller, while digital methods are used in the position controller. For precise position control, PID control algorithm and interpolation functions are executed in two 16 bit microprocessors with sampling rate 2ms. Experimental results show that the proposed joint position control system can be effectively applied to industrial robots in order to obtain high dynamic performance and precise positioning. The proposed joint position control system is being used in the control of FARA robots of Samsung Electronics.

  • PDF

Development of Unmanned Speed Sprayer(I) -Remote Control and Induction Cable System- (무인 스피드 스프레이어의 개발(I) -원격제어 및 유도케이블 시스템-)

  • 장익주;김태한;조명동
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.226-235
    • /
    • 1995
  • An unmanned speed sprayer was developed using a remote control and an inductive cable guidance systems to protect operators and environment from hazardous pesticides. The sprayer consists of a remote control system, an induction system, obstacle detectors, control actuators and an one-chip microcomputer. The sprayer can be operated by the induction guidance and/or remote control. The following summarize characteristics of the developed speed sprayer. 1) Both the remote control and the induction guidance operation were possible with the developed speed sprayer. 2) Sixteen functions of the forwarding, backing, halting, steering, 3-way valve for nozzles and fan operating etc. were utilized on the remote control system. 3) It was concluded that the DTMF method, having less transmitting error, performed better than the FSK method for an agricultural remote controller. A radio station may be necessary. 4) The digital inductive guidance system, consisting of five low-impedance detection coils and a window comparator circuit, performed better than the analog detecting system, guiding route using inductive voltage differential from tow detection coils.

  • PDF