• Title/Summary/Keyword: Digital terrain modeling

Search Result 63, Processing Time 0.025 seconds

REAL-TIME 3D SIMULATION INFRASTRUCTURE FOR PRACTICAL APPLICATION OF HIGH-RESOLUTION SATELLITE IMAGERY

  • Yoo, Byoung-Hyun;Brotzman, Don;Han, Soon-Hung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.155-158
    • /
    • 2008
  • The needs for digital models of real environment such as 3D terrain or cyber city model are increasing. Most of applications related with modeling and simulation require virtual environment constructed from geospatial information of real world in order to guarantee reliability and accuracy of the simulation. The most fundamental data for building virtual environment, terrain elevation and orthogonal imagery is acquired from optical sensor of satellite or airplane. Providing interoperable and reusable digital model is important to promote practical application of high-resolution satellite imagery. This paper presents the new research regarding representation of geospatial information, especially for 3D shape and appearance of virtual terrain, and describe framework for constructing real-time 3D model of large terrain based on high-resolution satellite imagery. It provides infrastructure of 3D simulation with geographical context. Details of standard-based approach for providing infrastructure of real-time 3D simulation using high-resolution satellite imagery are also presented. This work would facilitate interchange and interoperability across diverse systems and be usable by governments, industry scientists and general public.

  • PDF

OEM Fusion Technique for Multi-Image stereo (다중 스테레오를 위한 DEM 융합기법)

  • Kim, Min-Suk;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3047-3049
    • /
    • 2000
  • The ability to efficiently and robustly recover accurate 3D terrain models from sets of stereoscopic images is important to many civilian and military applications. To develop an effective and practical terrain modeling system. We propose the methods which detect unreliable elevations in digital elevation maps (DEMs). and fuse several DEMs from multiple sources into an accurate and reliable result. This paper focuses on two key factors for generating robust 3D terrain models. the ability to detect unreliable elevation estimates. and to fuse the reliable elevations into a single optimal terrain model. We apply the correlation score methodology to reconstruct accurate DEM for multi-image and show the method is more effective than the conventional averaging method. The photo-realistic simulator is used for generating four simulated images from ground truth DEM and orthoimage.

  • PDF

Geospatial Data Modeling for 3D Digital Mapping (3차원 수치지도 생성을 위한 지형공간 데이터 모델링)

  • Lee, Dong-Cheon;Bae, Kyoung-Ho;Ryu, Keun-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.393-400
    • /
    • 2009
  • Recently demand for the 3D modeling technology to reconstruct real world is getting increasing. However, existing geospatial data are mainly based on the 2D space. In addition, most of the geospatial data provide geometric information only. In consequence, there are limits in various applications to utilize information from those data and to reconstruct the real world in 3D space. Therefore, it is required to develop efficient 3D mapping methodology and data for- mat to establish geospatial database. Especially digital elevation model(DEM) is one of the essential geospatial data, however, DEM provides only spatially distributed 3D coordinates of the natural and artificial surfaces. Moreover, most of DEMs are generated without considering terrain properties such as surface roughness, terrain type, spatial resolution, feature and so on. This paper suggests adaptive and flexible geospatial data format that has possibility to include various information such as terrain characteristics, multiple resolutions, interpolation methods, break line information, model keypoints, and other physical property. The study area was categorized into mountainous area, gently rolling area, and flat area by taking the terrain characteristics into account with respect to terrain roughness. Different resolutions and interpolation methods were applied to each area. Finally, a 3D digital map derived from aerial photographs was integrated with the geospatial data and visualized.

Effective Decision of the Route Alignment with Digital Terrain (수치지형모형을 이용한 효율적인 노선결정)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Lee, Hyung-Seok;Lee, Sung-Soong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.195-203
    • /
    • 1996
  • The 3-D analysis of terrain for route design and selection is being used as important basic data for effective judgement of political draft. This study is to decide efficient alignment of the entry route and design bridge by modeling, analyzing and displaying surface with digital terrain data. In this study we analyze slope, aspect, shaded-relief, line of sight and watershed on the base of DTM such as contour, TIN and grid. And we can not only esti mate end-area volume for road construction by calculating cut and fill and displaying mass-curve but also recognize the scene after execution with simulation of road and terrain. The result of this study reveals that visual effects of the 3-D terrain data are very effective for designer and decisionmaker to select and review alternative route with regard to terrain characteristics.

  • PDF

Automatic Building Reconstruction with Satellite Images and Digital Maps

  • Lee, Dong-Cheon;Yom, Jae-Hong;Shin, Sung-Woong;Oh, Jae-Hong;Park, Ki-Surk
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.537-546
    • /
    • 2011
  • This paper introduces an automated method for building height recovery through the integration of high-resolution satellite images and digital vector maps. A cross-correlation matching method along the vertical line locus on the Ikonos images was deployed to recover building heights. The rational function models composed of rational polynomial coefficients were utilized to create a stereopair of the epipolar resampled Ikonos images. Building footprints from the digital maps were used for locating the vertical guideline along the building edges. The digital terrain model (DTM) was generated from the contour layer in the digital maps. The terrain height derived from the DTM at each foot of the buildings was used as the starting location for image matching. At a preset incremental value of height along the vertical guidelines derived from vertical line loci, an evaluation process that is based on the cross-correlation matching of the images was carried out to test if the top of the building has reached where maximum correlation occurs. The accuracy of the reconstructed buildings was evaluated by the comparison with manually digitized 3D building data derived from aerial photographs.

Fusion of LIDAR Data and Aerial Images for Building Reconstruction

  • Chen, Liang-Chien;Lai, Yen-Chung;Rau, Jiann-Yeou
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.773-775
    • /
    • 2003
  • From the view point of data fusion, we integrate LIDAR data and digital aerial images to perform 3D building modeling in this study. The proposed scheme comprises two major parts: (1) building block extraction and (2) building model reconstruction. In the first step, height differences are analyzed to detect the above ground areas. Color analysis is then performed for the exclusion of tree areas. Potential building blocks are selected first followed by the refinement of building areas. In the second step, through edge detection and extracting the height information from LIDAR data, accurate 3D edges in object space is calculated. The accurate 3D edges are combined with the already developed SMS method for building modeling. LIDAR data acquired by Leica ALS 40 in Hsin-Chu Science-based Industrial Park of north Taiwan will be used in the test.

  • PDF

Geographical and Equipment Modeling for 3D Excavation Simulation

  • Moon, Sungwoo;Jo, Hwani;Ku, Hyeonggyun;Choi, Sungil
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.242-244
    • /
    • 2017
  • Excavation for construction is implemented in natural geographical terrain using a variety of construction equipment. Therefore, 3D excavation simulation requires integration of geographical and equipment modeling. This paper proposes a technique that integrates geographical and equipment modeling for 3D simulations of construction excavation. The geographical model uses a digital map to show ground surface changes during excavation and the equipment model shows equipment movement and placement. This combination produced a state of the art 3D simulation environment that can be used for machine guidance. An equipment operator can use the 3D excavation simulation to help construction equipment operators with decisions during excavation work and consequently improve productivity.

  • PDF

Application of Library-Based Texture Mapping Method (라이브러리 기반의 Texture Mapping 기법 활용연구)

  • Song Jeong-Heon;Park Su-Yong;Lim Hyo-Suk;Kim Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.369-373
    • /
    • 2006
  • A 3D modeling of urban area can be composed the terrain modeling that can express specific and shape of the terrain and the object modeling such as buildings, trees and facilities which are found in urban areas. Especially in a 3D modeling of building, it is very important to make a unit model by simplifying 3D structure and to take a texture mapping, which can help visualize surface information. In this study, the texture mapping technique, based on library for 3D urban modeling, was used for building modeling. This technique applies the texture map in the form of library which is constructed as building types, and then take mapping to the 3D building frame. For effectively apply, this technique, we classified buildings automatically using LiDAR data and made 3D frame using LiDAR and digital map. To express the realistic building texture, we made the texture library using real building photograph.

  • PDF

Distributed Air Defense Simulation Model and its Applications (방공교전모델(DADSim) 개발 및 활용사례)

  • 최상영;김의환
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.2
    • /
    • pp.134-148
    • /
    • 2001
  • In this paper, air-defense simulation model, called "DADSim", will be introduced. DADSim(Distributed Air Defense Simulation Model) was developed by Modeling&Simulation Lab of K.N.D.U.(Korea National Defence Univ) Weapon Systems Department. This model is an analysis-purpose model in the engagement-level. DADSim can simulate not only the global air-defense or Korean Peninsula but also the local air-defense or a battle field. DADSim uses the DTED(digital terrain elevation data) LeveII it for the representation of peninsula terrain characteristics. The weapon systems cooperated in the model are low/medium-range missile systems such as HAWK, NIKE, SAM. DADSim was designed in the way of object-oriented development method, implemented by C++ language. The simulation view is an event-sequenced object-orientation. For the convenience of input, output analysis, GUI(Graphic User Interface) of menu, window, dialog box, etc. are provided to the user, For the execution of DADSim, Silicon Graphic IRIX 6.3 or high version is required. DADSim can be used for the effectiveness analysis of­defence systems. Some illustrative examples will be shown in this paper.

  • PDF

A Neural Network Approach to Modeling PCS Wave Propagation Loss Prediction Using 3D Digital Terrain Maps (지형데이터를 이용한 신경회로망 PCS 전파손실 예측모델)

  • 정성신;양서민;이혁준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.357-359
    • /
    • 1998
  • 무선 통신 환경에서 기지국 안테나를 떠난 전파가 수신안테나에 도달하는 과정 중에 발생하는 전파 손실은 매우 복잡한 비선형 함수이다. 본 논문에서는 신경회로망을 사용한 전파 손실 모델을 제안하고, 3차원 지형 데이터를 이용하여 전파 환경을 반영할 수 있는 특징을 추출하여 이를 신경회로망에 적용함으로써 전파손실 예측모델을 생성하는 방법을 소개한다. 각 필드 측정 데이터에 대한 특징 값을 이용하여 신경회로망을 학습하여 예측모델을 완성한다. 또한, 서울 도심 지역의 실제 PCS 서비스 환경에 대한 실험결과를 통해 제안하는 모델의 우수성을 보인다.

  • PDF