• Title/Summary/Keyword: Digital signal

Search Result 3,999, Processing Time 0.033 seconds

Analysis of Skin Color Pigments from Camera RGB Signal Using Skin Pigment Absorption Spectrum (피부색소 흡수 스펙트럼을 이용한 카메라 RGB 신호의 피부색 성분 분석)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • In this paper, a method to directly calculate the major elements of skin color such as melanin and hemoglobin from the RGB signal of the camera is proposed. The main elements of skin color typically measure spectral reflectance using specific equipment, and reconfigure the values at some wavelengths of the measured light. The values calculated by this method include such things as melanin index and erythema index, and require special equipment such as a spectral reflectance measuring device or a multi-spectral camera. It is difficult to find a direct calculation method for such component elements from a general digital camera, and a method of indirectly calculating the concentration of melanin and hemoglobin using independent component analysis has been proposed. This method targets a region of a certain RGB image, extracts characteristic vectors of melanin and hemoglobin, and calculates the concentration in a manner similar to that of Principal Component Analysis. The disadvantage of this method is that it is difficult to directly calculate the pixel unit because a group of pixels in a certain area is used as an input, and since the extracted feature vector is implemented by an optimization method, it tends to be calculated with a different value each time it is executed. The final calculation is determined in the form of an image representing the components of melanin and hemoglobin by converting it back to the RGB coordinate system without using the feature vector itself. In order to improve the disadvantages of this method, the proposed method is to calculate the component values of melanin and hemoglobin in a feature space rather than an RGB coordinate system using a feature vector, and calculate the spectral reflectance corresponding to the skin color using a general digital camera. Methods and methods of calculating detailed components constituting skin pigments such as melanin, oxidized hemoglobin, deoxidized hemoglobin, and carotenoid using spectral reflectance. The proposed method does not require special equipment such as a spectral reflectance measuring device or a multi-spectral camera, and unlike the existing method, direct calculation of the pixel unit is possible, and the same characteristics can be obtained even in repeated execution. The standard diviation of density for melanin and hemoglobin of proposed method was 15% compared to conventional and therefore gives 6 times stable.

Investigation of the Signal Characteristics of a Small Gamma Camera System Using NaI(Tl)-Position Sensitive Photomultiplier Tube (NaI(Tl) 섬광결정과 위치민감형 광전자증배관을 이용한 소형 감마카메라의 신호 특성 고찰)

  • Choi, Yong;Kim, Jong-Ho;Kim, Joon-Young;Im, Ki-Chun;Kim, Sang-Eun;Choe, Yearn-Seong;Lee, Kyung-Han;Joo, Koan-Sik;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.82-93
    • /
    • 2000
  • Purpose: We characterized the signals obtained from the components of a small gamma camera using Nal(Tl)-position sensitive photomultiplier tube (PSPMT) and optimized the parameters employed in the modules of the system. Materials and Methods: The small gamma camera system consists of a Nal(Tl) crystal ($60{\times}60{\times}6mm^3$) coupled with a Hamamatsu R3941 PSPMT, a resister chain circuit, preamplifiers, nuclear instrument modules (NIMs), an analog to digital converter and a personal computer for control and display. The PSPMT was read out using a resistive charge division circuit which multiplexes the 34 cross wire anode channels into 4 signals (X+, X-, Y+, Y -). Those signals were individually amplified by four preamplifiers and then, shaped and amplified by amplifiers. The signals were discriminated and digitized via triggering signal and used to localize the position of an event by applying the Anger logic. The gamma camera control and image display was performed by a program implemented using a graphic software. Results: The characteristics of signal and the parameters employed in each module of the system were presented. The intrinsic sensitivity of the system was approximately $8{\times}10^3$ counts/sec/${\mu}Ci$. The intrinsic energy resolution of the system was 18% FWHM at 140 keV. The spatial resolution obtained using a line-slit mask and $^{99m}Tc$ point source were, respectively, 2.2 and 2.3 mm FWHM in X and Y directions. Breast phantom containing $2{\sim}7mm$ diameter spheres was successfully imaged with a parallel hole collimator. The image displayed accurate size and activity distribution over the imaging field of view Conclusion: We proposed a simple method for development of a small gamma camera and presented the characteristics of the signals from the system and the optimized parameters used in the modules of the small gamma camera.

  • PDF

Evaluation of Fabricated Semiconductor Sensor for Verification of γ-ray Distribution in Brachytherapy (근접치료용 방사성 동위원소의 선량분포 확인을 위한 디지털 반도체 센서의 제작 및 평가)

  • Park, Jeong-Eun;Kim, Kyo-Tae;Choi, Won-Hoon;Lee, Ho;Cho, Sam-Joo;Ahn, So-Hyun;Kim, Jin-Young;Song, Yong-Keun;Kim, Keum-bae;Huh, Hyun-Do;Park, Sung-Kwang
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.280-285
    • /
    • 2015
  • In radiation therapy fields, a brachytherapy is a treatment that kills lesion of cells by inserting a radioisotope that keeps emitting radiation into the body. We currently verify the consistency of radiation treatment plan and dose distribution through film/screen system (F/S system), provide therapy after checking dose. When we check dose distribution, F/S systems have radiation signal distortion because there is low resolution by penumbra depending on the condition of film developed. In this study, We fabricated a $HgI_2$ Semiconductor radiation sensor for base study in order that we verify the real dose distribution weather it's same as plans or not in brachytherapy. Also, we attempt to evaluate the feasibility of QA system by utilizing and evaluating the sensor to brachytherapy source. As shown in the result of detected signal with various source-to-detector distance (SDD), we quantitatively verified the real range of treatment which is also equivalent to treatment plans because only the low signal estimated as scatters was measured beyond the range of treatment. And the result of experiment that we access reproducibility on the same condition of ${\gamma}$-ray, we have made sure that the CV (coefficient of variation) is within 1.5 percent so we consider that the $HgI_2$ sensor is available at QA of brachytherapy based on the result.

Benchmark Test Study of Localized Digital Streamer System (국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구)

  • Jungkyun Shin;Jiho Ha;Gabseok Seo;Young-Jun Kim;Nyeonkeon Kang;Jounggyu Choi;Dongwoo Cho;Hanhui Lee;Seong-Pil Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.52-61
    • /
    • 2023
  • The use of ultra-high-resolution (UHR) seismic surveys to preceisly characterize coastal and shallow structures have increased recently. UHR surveys derive a spatial resolution of 3.125 m using a high-frequency source (80 Hz to 1 kHz). A digital streamer system is an essential module for acquiring high-quality UHR seismic data. Localization studies have focused on reducing purchase costs and decreasing maintenance periods. Basic performance verification and application tests of the developed streamer have been successfully carried out; however, a comparative analysis with the existing benchmark model was not conducted. In this study, we characterized data obtained by using a developed streamer and a benchmark model simultaneously. Tamhae 2 and auxiliary equipment of the Korea Institute of Geoscience and Mineral Resources were used to acquire 2D seismic data, which were analyzed from different perspectives. The data obtained using the developed streamer differed in sensitivity from that obtained using benchmark model by frequency band.However, both type of data had a very high level of similarity in the range corresponding to the central frequency band of the seismic source. However, in the low frequency band below 60 Hz, data obtained using the developed streamer showed a lower signal-to-noise ratio than that obtained using the benchmark model.This lower ratio can hinder the quality in data acquisition using low-frequency sound sources such as cluster air guns. Three causes for this difference were, and streamers developed in future will attempt to reflect on these improvements.

Color Analyses on Digital Photos Using Machine Learning and KSCA - Focusing on Korean Natural Daytime/nighttime Scenery - (머신러닝과 KSCA를 활용한 디지털 사진의 색 분석 -한국 자연 풍경 낮과 밤 사진을 중심으로-)

  • Gwon, Huieun;KOO, Ja Joon
    • Trans-
    • /
    • v.12
    • /
    • pp.51-79
    • /
    • 2022
  • This study investigates the methods for deriving colors which can serve as a reference to users such as designers and or contents creators who search for online images from the web portal sites using specific words for color planning and more. Two experiments were conducted in order to accomplish this. Digital scenery photos within the geographic scope of Korea were downloaded from web portal sites, and those photos were studied to find out what colors were used to describe daytime and nighttime. Machine learning was used as the study methodology to classify colors in daytime and nighttime, and KSCA was used to derive the color frequency of daytime and nighttime photos and to compare and analyze the two results. The results of classifying the colors of daytime and nighttime photos using machine learning show that, when classifying the colors by 51~100%, the area of daytime colors was approximately 2.45 times greater than that of nighttime colors. The colors of the daytime class were distributed by brightness with white as its center, while that of the nighttime class was distributed with black as its center. Colors that accounted for over 70% of the daytime class were 647, those over 70% of the nighttime class were 252, and the rest (31-69%) were 101. The number of colors in the middle area was low, while other colors were classified relatively clearly into day and night. The resulting color distributions in the daytime and nighttime classes were able to provide the borderline color values of the two classes that are classified by brightness. As a result of analyzing the frequency of digital photos using KSCA, colors around yellow were expressed in generally bright daytime photos, while colors around blue value were expressed in dark night photos. For frequency of daytime photos, colors on the upper 40% had low chroma, almost being achromatic. Also, colors that are close to white and black showed the highest frequency, indicating a large difference in brightness. Meanwhile, for colors with frequency from top 5 to 10, yellow green was expressed darkly, and navy blue was expressed brightly, partially composing a complex harmony. When examining the color band, various colors, brightness, and chroma including light blue, achromatic colors, and warm colors were shown, failing to compose a generally harmonious arrangement of colors. For the frequency of nighttime photos, colors in approximately the upper 50% are dark colors with a brightness value of 2 (Munsell signal). In comparison, the brightness of middle frequency (50-80%) is relatively higher (brightness values of 3-4), and the brightness difference of various colors was large in the lower 20%. Colors that are not cool colors could be found intermittently in the lower 8% of frequency. When examining the color band, there was a general harmonious arrangement of colors centered on navy blue. As the results of conducting the experiment using two methods in this study, machine learning could classify colors into two or more classes, and could evaluate how close an image was with certain colors to a certain class. This method cannot be used if an image cannot be classified into a certain class. The result of such color distribution would serve as a reference when determining how close a certain color is to one of the two classes when the color is used as a dominant color in the base or background color of a certain design. Also, when dividing the analyzed images into several classes, even colors that have not been used in the analyzed image can be determined to find out how close they are to a certain class according to the color distribution properties of each class. Nevertheless, the results cannot be used to find out whether a specific color was used in the class and by how much it was used. To investigate such an issue, frequency analysis was conducted using KSCA. The color frequency could be measured within the range of images used in the experiment. The resulting values of color distribution and frequency from this study would serve as references for color planning of digital design regarding natural scenery in the geographic scope of Korea. Also, the two experiments are meaningful attempts for searching the methods for deriving colors that can be a useful reference among numerous images for content creator users of the relevant field.

Image Watermarking for Copyright Protection of Images on Shopping Mall (쇼핑몰 이미지 저작권보호를 위한 영상 워터마킹)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.147-157
    • /
    • 2013
  • With the advent of the digital environment that can be accessed anytime, anywhere with the introduction of high-speed network, the free distribution and use of digital content were made possible. Ironically this environment is raising a variety of copyright infringement, and product images used in the online shopping mall are pirated frequently. There are many controversial issues whether shopping mall images are creative works or not. According to Supreme Court's decision in 2001, to ad pictures taken with ham products is simply a clone of the appearance of objects to deliver nothing but the decision was not only creative expression. But for the photographer's losses recognized in the advertising photo shoot takes the typical cost was estimated damages. According to Seoul District Court precedents in 2003, if there are the photographer's personality and creativity in the selection of the subject, the composition of the set, the direction and amount of light control, set the angle of the camera, shutter speed, shutter chance, other shooting methods for capturing, developing and printing process, the works should be protected by copyright law by the Court's sentence. In order to receive copyright protection of the shopping mall images by the law, it is simply not to convey the status of the product, the photographer's personality and creativity can be recognized that it requires effort. Accordingly, the cost of making the mall image increases, and the necessity for copyright protection becomes higher. The product images of the online shopping mall have a very unique configuration unlike the general pictures such as portraits and landscape photos and, therefore, the general image watermarking technique can not satisfy the requirements of the image watermarking. Because background of product images commonly used in shopping malls is white or black, or gray scale (gradient) color, it is difficult to utilize the space to embed a watermark and the area is very sensitive even a slight change. In this paper, the characteristics of images used in shopping malls are analyzed and a watermarking technology which is suitable to the shopping mall images is proposed. The proposed image watermarking technology divide a product image into smaller blocks, and the corresponding blocks are transformed by DCT (Discrete Cosine Transform), and then the watermark information was inserted into images using quantization of DCT coefficients. Because uniform treatment of the DCT coefficients for quantization cause visual blocking artifacts, the proposed algorithm used weighted mask which quantizes finely the coefficients located block boundaries and coarsely the coefficients located center area of the block. This mask improves subjective visual quality as well as the objective quality of the images. In addition, in order to improve the safety of the algorithm, the blocks which is embedded the watermark are randomly selected and the turbo code is used to reduce the BER when extracting the watermark. The PSNR(Peak Signal to Noise Ratio) of the shopping mall image watermarked by the proposed algorithm is 40.7~48.5[dB] and BER(Bit Error Rate) after JPEG with QF = 70 is 0. This means the watermarked image is high quality and the algorithm is robust to JPEG compression that is used generally at the online shopping malls. Also, for 40% change in size and 40 degrees of rotation, the BER is 0. In general, the shopping malls are used compressed images with QF which is higher than 90. Because the pirated image is used to replicate from original image, the proposed algorithm can identify the copyright infringement in the most cases. As shown the experimental results, the proposed algorithm is suitable to the shopping mall images with simple background. However, the future study should be carried out to enhance the robustness of the proposed algorithm because the robustness loss is occurred after mask process.

An Objective Estimation for Simulating of Asymmetrical Auditory Filter of the Hearing Impaired According to Hearing Loss Degree (난청인의 난청 정도에 따른 비대칭 청각 필터 구현의 객관적 평가)

  • Joo, S.I.;Jeon, Y.Y.;Song, Y.R.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.3 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • Hearing impaired person's hearing loss has personally various shape, so existing symmetrical auditory filter of frequency band method wasn't properly simulated the hearing impaired person's various hearing loss shape. The shapes of auditory filter are asymmetrical different with each center frequency and each input level. Hearing impaired person which has hearing loss was differently changed with that of normal hearing people and it has different value for speech of quality through auditory filter. In this study, the asymmetrical auditory filter was simulated and then some tests to estimate the filter's performance objectively were performed. The experiment as simulated auditory filter's performance evaluation method used perceptual evaluation of speech quality (PESQ) and log likelihood ratio (LLR) for speech through auditory filter. In the test, processed speech was evaluated objective speech quality and distortion using PESQ and LLR value. When hearing loss processed, PESQ and LLR value have big difference between symmetrical and asymmetrical auditory filter. It means that the difference of the shape auditory filter may affect to speech quality. Especially, when hearing loss existed, auditory filter changing according to asymmetrical shape for each center frequency affected to perceive speech quality of the hearing impaired.

  • PDF

An 8b 240 MS/s 1.36 ㎟ 104 mW 0.18 um CMOS ADC for High-Performance Display Applications (고성능 디스플레이 응용을 위한 8b 240 MS/s 1.36 ㎟ 104 mW 0.18 um CMOS ADC)

  • In Kyung-Hoon;Kim Se-Won;Cho Young-Jae;Moon Kyoung-Jun;Jee Yong;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • This work describes an 8b 240 MS/s CMOS ADC as one of embedded core cells for high-performance displays requiring low power and small size at high speed. The proposed ADC uses externally connected pins only for analog inputs, digital outputs, and supplies. The ADC employs (1) a two-step pipelined architecture to optimize power and chip size at the target sampling frequency of 240 MHz, (2) advanced bootstrapping techniques to achieve high signal bandwidth in the input SHA, and (3) RC filter-based on-chip I/V references to improve noise performance with a power-off function added for portable applications. The prototype ADC is implemented in a 0.18 um CMOS and simultaneously integrated in a DVD system with dual-mode inputs. The measured DNL and INL are within 0.49 LSB and 0.69 LSB, respectively. The prototype ADC shows the SFDR of 53 dB for a 10 MHz input sinewave at 240 MS/s while maintaining the SNDR exceeding 38 dB and the SFDR exceeding 50 dB for input frequencies up to the Nyquist frequency at 240 MS/s. The ADC consumes, 104 mW at 240 MS/s and the active die area is 1.36 ㎟.

A l0b 150 MSample/s 1.8V 123 mW CMOS A/D Converter (l0b 150 MSample/s 1.8V 123 mW CMOS 파이프라인 A/D 변환기)

  • Kim Se-Won;Park Jong-Bum;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • This work describes a l0b 150 MSample/s CMOS pipelined A/D converter (ADC) based on advanced bootsuapping techniques for higher input bandwidth than a sampling rate. The proposed ADC adopts a typical multi-step pipelined architecture, employs the merged-capacitor switching technique which improves sampling rate and resolution reducing by $50\%$ the number of unit capacitors used in the multiplying digital-to-analog converter. On-chip current and voltage references for high-speed driving capability of R & C loads and on-chip decimator circuits for high-speed testability are implemented with on-chip decoupling capacitors. The proposed AU is fabricated in a 0.18 um 1P6M CMOS technology. The measured differential and integral nonlinearities are within $-0.56{\~}+0.69$ LSB and $-1.50{\~}+0.68$ LSB, respectively. The prototype ADC shows the signal-to-noise-and-distortion ratio (SNDR) of 52 dB at 150 MSample/s. The active chip area is 2.2 mm2 (= 1.4 mm ${\times}$ 1.6 mm) and the chip consumes 123 mW at 150 MSample/s.

A Dual-Channel 6b 1GS/s 0.18um CMOS ADC for Ultra Wide-Band Communication Systems (초광대역 통신시스템 응용을 위한 이중채널 6b 1GS/s 0.18um CMOS ADC)

  • Cho, Young-Jae;Yoo, Si-Wook;Kim, Young-Lok;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.47-54
    • /
    • 2006
  • This work proposes a dual-channel 6b 1GS/s ADC for ultra wide-band communication system applications. The proposed ADC based on a 6b interpolated flash architecture employs wide-band open-loop track-and-hold amplifiers, comparators with a wide-range differential difference pre-amplifier, latches with reduced kickback noise, on-chip CMOS references, and digital bubble-code correction circuits to optimize power, chip area, and accuracy at 1GS/s. The ADC implemented in a 0.18um 1P6M CMOS technology shows a signal-to-noise-and-distortion ratio of 30dB and a spurious-free dynamic range of 39dB at 1GS/s. The measured differential and integral non-linearities of the prototype ADC are within 1.0LSB and 1.3LSB, respectively. The dual-channel ADC has an active area of $4.0mm^2$ and consumes 594mW at 1GS/s and 1.8V.