DOI QR코드

DOI QR Code

Evaluation of Fabricated Semiconductor Sensor for Verification of γ-ray Distribution in Brachytherapy

근접치료용 방사성 동위원소의 선량분포 확인을 위한 디지털 반도체 센서의 제작 및 평가

  • Park, Jeong-Eun (Department of Radiation Oncology, YeonSei Cancer Center) ;
  • Kim, Kyo-Tae (Department of Biomedical Engineering, Inje University) ;
  • Choi, Won-Hoon (Department of Radiation Oncology, School of Medicine, Yonsei University) ;
  • Lee, Ho (Department of Radiation Oncology, School of Medicine, Yonsei University) ;
  • Cho, Sam-Joo (Department of Radiation Oncology, School of Medicine, Yonsei University) ;
  • Ahn, So-Hyun (Department of Radiation Oncology, School of Medicine, Yonsei University) ;
  • Kim, Jin-Young (Department of Radiation Oncology, Haeundae Back Hospital) ;
  • Song, Yong-Keun (Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Keum-bae (Department of Radiation Oncology, Korea Institute of Radiation Oncology and Medical Physics) ;
  • Huh, Hyun-Do (Department of Radiation Oncology, Inha University Hospital) ;
  • Park, Sung-Kwang (Department of Radiation Oncology, Busan Back Hospital)
  • 박정은 (연세암병원 방사선종양학과) ;
  • 김교태 (인제대학교 의용공학과) ;
  • 최원훈 (연세대학교 의과대학 방사선종양학교실) ;
  • 이호 (연세대학교 의과대학 방사선종양학교실) ;
  • 조삼주 (연세대학교 의과대학 방사선종양학교실) ;
  • 안소현 (연세대학교 의과대학 방사선종양학교실) ;
  • 김진영 (해운대 백병원 방사선종양학과) ;
  • 송용근 (한국원자력의학원 중입자가속기사업단 중입자임상연구부) ;
  • 김금배 (한국원자력의학원 방사선종양학과) ;
  • 허현도 (인하대학교병원 방사선종양학과) ;
  • 박성광 (부산 백병원 방사선종양학과)
  • Received : 2015.12.09
  • Accepted : 2015.12.25
  • Published : 2015.12.31

Abstract

In radiation therapy fields, a brachytherapy is a treatment that kills lesion of cells by inserting a radioisotope that keeps emitting radiation into the body. We currently verify the consistency of radiation treatment plan and dose distribution through film/screen system (F/S system), provide therapy after checking dose. When we check dose distribution, F/S systems have radiation signal distortion because there is low resolution by penumbra depending on the condition of film developed. In this study, We fabricated a $HgI_2$ Semiconductor radiation sensor for base study in order that we verify the real dose distribution weather it's same as plans or not in brachytherapy. Also, we attempt to evaluate the feasibility of QA system by utilizing and evaluating the sensor to brachytherapy source. As shown in the result of detected signal with various source-to-detector distance (SDD), we quantitatively verified the real range of treatment which is also equivalent to treatment plans because only the low signal estimated as scatters was measured beyond the range of treatment. And the result of experiment that we access reproducibility on the same condition of ${\gamma}$-ray, we have made sure that the CV (coefficient of variation) is within 1.5 percent so we consider that the $HgI_2$ sensor is available at QA of brachytherapy based on the result.

방사선 치료분야 중 근접치료는 방사성 동위원소를 체내에 직접 삽입하여 병변 세포를 사멸시키는 치료법으로써, 주로 고선량률 치료가 시행되고 있다. 현재 치료계획과 실제 선량 방출범위의 일치성 여부는 Film/Screen 시스템을 통해 확인하고, 확인된 선량분포에 따라 방사선 치료를 시행하고 있다. 선량 분포 확인 시 F/S 시스템을 이용할 경우, Film 현상조건에 따른 신호 왜곡과 반음영에 의한 저분해능으로 인하여 치료계획과의 선량 분포 일치성을 정량적으로 파악하기 힘든 단점이 있다. 본 연구에서는 방사선 근접치료 시 치료계획과 동일한 선량 분포 여부를 확인하는 디지털 검출시스템의 기초 연구를 진행하고자, PIB법을 이용한 $HgI_2$ 반도체 검출센서를 제작하였다. 또한 이를 근접치료선원을 이용해 평가함으로써, QA 시스템으로 이용 가능성을 검증하고자 하였다. 근접치료 범위의 확인을 위하여 SDD의 변화에 대한 신호 수집량을 평가한 결과, 치료 범위 이상의 거리에서는 산란선으로 추정되는 낮은 신호만이 측정되었으므로 치료 계획시와 동일한 치료 범위를 정량적으로 확인할 수 있었다. 또한 동일한 ${\gamma}$-선 조사 조건에 대한 재현성 평가 결과, 변동계수 1.5% 이내인 것을 확인하였다. 이와 같은 결과를 바탕으로, 본 연구에서 제작한 센서는 방사선 근접치료 QA 시스템으로 적용 가능할 것이라 사료된다.

Keywords

References

  1. Philippe Nickers, Benedicte Thissen, Nicolas Jansen, J.M. Deneufbourg: $^{192}Ir$ or $^{128}I$ Prostate brachytherapy as a boost to external beam radiotherapy in locally advanced prostatic cancer: A dosimetric point of view. Radiotherapy and oncology 78(1):47-52 (2006) https://doi.org/10.1016/j.radonc.2005.09.002
  2. Giwon Jang, Jungwook Shin, Kyungmin Oh, et al: The Feasibility Study of photoconductor materials for the use of adosimeter in Radiotherapy. The Korean Society of Radiology 7(1):81-84 (2013) https://doi.org/10.7742/jksr.2013.7.1.081
  3. Bosun Kang, et al: Development of image quality evaluation program for diagnostic radiography. The Korean Society of Radiography 2(2):5-10 (2008)
  4. Qihua Zhao, Larry E. Antonuk, Youcef EI-Mohri, et al: Performance evaluation of polycrystalline HgI2 photoconductors for radiation therapy imaging. Med Phys 37(6):2738-2748 (2010) https://doi.org/10.1118/1.3416924
  5. Youngbin Kim, Minseok Yun, Minwoo Kim, et al: Development of Radiation Image Sensor using Hetero-junction. The Korean Society of Radiography. 3(3):27-35 (2009)
  6. Kyotae Kim, Sangsik Kang, Sicheul Noh, et al: Absorbed Spectrum Comparison of Lead and Tungsten in Continuous X-ray Energy using Monte Carlo Simulation. The Korean Society of Radiography 6(6):483-487 (2012) https://doi.org/10.7742/jksr.2012.6.6.483
  7. Sangsik Kang, Kyotae Kim, Sicheol Noh, et al: The Study on Design of Customized Radiation Protective Layer for Medical Radiation Dose Reduction. The Korean Society of Radiography. 8(6):333-338 (2014) https://doi.org/10.7742/jksr.2014.8.6.333
  8. J. H. Hubbell, S. M. Seltzer, et al: Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients. National Institute of Standards and Technology (1999)
  9. Sukhee Jung, Yoonsuk Kim, Youngbin Kim, et al: The study of PbO's sintering effect for high efficiency x-ray detection sensor. The Korean Society of Radiography 3(3):37-40 (2009)
  10. Minseok Yun, Sungho Cho, Kyungmin Oh, et al: X-ray properties measurement of Flat panel Digital X-ray gas detector. The Korean Society of Radiography 3(1):15-19 (2009)
  11. Luiz Antonio R, da Rosa: Reproducibility study of TLC-100 micro-cubes at radiothrapy dose level. Applied Radiation and Isotopes. 50:573-577 (1999) https://doi.org/10.1016/S0969-8043(98)00068-2

Cited by

  1. 비파괴검사 분야에서 방사선원의 위치 확인을 위한 반도체 검출기 설계에 관한 연구 vol.11, pp.3, 2015, https://doi.org/10.7742/jksr.2017.11.3.171