• Title/Summary/Keyword: Digital models

Search Result 1,724, Processing Time 0.025 seconds

Using of Digital Textbook for the Cultivation of Digital Citizenship (디지털 시민성 함양을 위한 디지털교과서 활용 방안)

  • Park, Sanghoon
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.111-119
    • /
    • 2020
  • The purpose of this study is to suggest how to use digital textbooks to cultivate digital citizenship of elementary and secondary students. We analyzed domestic and international research on digital citizenship and analyzed the definition and elements of digital citizenship. Based on the analysis, we formed a council where field teachers, education experts, and government agencies participated. This study devised the elements and competence models of digital citizenship for elementary and secondary school students, and suggested teaching methods using digital textbooks. As a result, we derived five elements of 'Digital Literacy', 'Digital Communication', 'Digital Ethics', 'Digital Responsibility', and 'Digital Creativity & Collaboration', and devised a 'Triangle competency model' for the school site application.

Mathematical Modeling of the Tennis Serve: Adaptive Tasks from Middle and High School to College

  • Thomas Bardy;Rene Fehlmann
    • Research in Mathematical Education
    • /
    • v.26 no.3
    • /
    • pp.167-202
    • /
    • 2023
  • A central problem of mathematics teaching worldwide is probably the insufficient adaptive handling of tasks-especially in computational practice phases and modeling tasks. All students in a classroom must often work on the same tasks. In the process, the high-achieving students are often underchallenged, and the low-achieving ones are overchallenged. This publication uses different modeling of the tennis serve as an example to show a possible solution to the problem and develops and discusses one adaptive task each for middle school, high school, and college using three mathematical models of the tennis serve each time. From model to model within the task, the complexity of the modeling increases, the mathematical or physical demands on the students increase, and the new modeling leads to more realistic results. The proposed models offer the possibility to address heterogeneous learning groups by their arrangement in the surface structure of the so-called parallel adaptive task and to stimulate adaptive mathematics teaching on the instructional topic of mathematical modeling. Models A through C are suitable for middle school instruction, models C through E for high school, and models E through G for college. The models are classified in the specific modeling cycle and its extension by a digital tool model, and individual modeling steps are explained. The advantages of the presented models regarding teaching and learning mathematical modeling are elaborated. In addition, we report our first teaching experiences with the developed parallel adaptive tasks.

A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: effects of tooth irregularity and scanning direction

  • Anh, Ji-won;Park, Ji-Man;Chun, Youn-Sic;Kim, Miae;Kim, Minji
    • The korean journal of orthodontics
    • /
    • v.46 no.1
    • /
    • pp.3-12
    • /
    • 2016
  • Objective: The purpose of this study was to compare the precision of three-dimensional (3D) images acquired using iTero$^{(R)}$(Align Technology Inc., San Jose, CA, USA) and Trios$^{(R)}$(3Shape Dental Systems, Copenhagen, Denmark) digital intraoral scanners, and to evaluate the effects of the severity of tooth irregularities and scanning sequence on precision. Methods: Dental arch models were fabricated with differing degrees of tooth irregularity and divided into 2 groups based on scanning sequence. To assess their precision, images were superimposed and an optimized superimposition algorithm was employed to measure any 3D deviation. The t-test, paired t-test, and one-way ANOVA were performed (p < 0.05) for statistical analysis. Results: The iTero$^{(R)}$ and Trios$^{(R)}$ systems showed no statistically significant difference in precision among models with differing degrees of tooth irregularity. However, there were statistically significant differences in the precision of the 2 scanners when the starting points of scanning were different. The iTero$^{(R)}$ scanner (mean deviation, $29.84{\pm}12.08{\mu}m$) proved to be less precise than the Trios$^{(R)}$ scanner ($22.17{\pm}4.47{\mu}m$). Conclusions: The precision of 3D images differed according to the degree of tooth irregularity, scanning sequence, and scanner type. However, from a clinical standpoint, both scanners were highly accurate regardless of the degree of tooth irregularity.

Comparison of the accuracy of digital models made from white light scanner by scanning method (스캐닝 방법에 따른 백색광 스캐너 기반으로 채득된 디지털 모형의 정확성 비교)

  • Kim, Ki-Baek;Lee, Gyeong-Tak;Kim, Jae-Hong
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.6
    • /
    • pp.1082-1089
    • /
    • 2012
  • Objectives : The aim of this study was to determine the accuracy of digitized stone models, impression materials compared to the master model and the reliability of the computer aided analysis. Methods : A master model(500B-1, Nissin dental product, Japan) with the prepared lower full arch tooth was used. Ten vinyl polysiloxane impressions(Examix$^{(R)}$, GC Industrial Corp, Japan) of master model were taken and type IV stone(aesthetic-base gold$^{(R)}$, Dentona, Germany) were poured in stone models. The linear distance between the reference points were measured and analyzed on the Delcam Copycad$^{(R)}$(Delcam plc, UK). The t-student test for paired samples was used for statistical analysis. Results : The mean differences to master model for stone model and impression material were 0.11~0.19mm, and 0.19~0.29mm, respectively. There were statistical differences in dimensional accuracy for full arch impression between master model and stone model/impressions(p<.05). Conclusions : Two different scanning methods showed clinically acceptable accuracy of full arch digital impression produced by them. These results will have to be confirmed in further clinical studies.

Deriving Channel Width-discharge Relationship from Remote Sensing Imagery and Digital Elevation Models (원격영상자료와 수치고도모형으로부터 하폭-유량 관계식 도출)

  • Kim, Jong Chun;Paik, Kyungrock
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.685-693
    • /
    • 2015
  • We propose a method for deriving the relationship between channel width and discharge from remote sensing products. Stream widths at points distributed along a river network can be measured from high-resolution remote imagery. Further, corresponding drainage area for these points can be calculated using digital elevation models, making it possible to construct width-drainage area relation. On the other hand, the relationship between the flow discharge and the drainage area is obtained from historical data measured at ground stations. By coupling these two relationships, we can finally derive the width-discharge relationship which comprises an important component of downstream hydraulic geometry. The proposed method was tested for the Nakdong River and the Seomjin River, successfully capturing power-law exponents in the width-discharge relationships reported in earlier studies. The proposed approach can serve as an alternative for obtaining the hydraulic geometry relationship under the limits of ground data.

Differences in molar relationships and occlusal contact areas evaluated from the buccal and lingual aspects using 3-dimensional digital models

  • Jang, Sook-Yoon;Kim, Minji;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.42 no.4
    • /
    • pp.182-189
    • /
    • 2012
  • Objective: The aims of this study were to use a 3-dimensional (3D) system to compare molar relationship assessments performed from the buccal and lingual aspects, and to measure differences in occlusal contact areas between Class II and Class I molar relationships. Methods: Study casts (232 pairs from 232 subjects, yielding a total of 380 sides) were evaluated from both the buccal and lingual aspects, so that molar relationships could be classified according to the scheme devised by Liu and Melsen. Occlusal contact areas were quantified using 3D digital models, which were generated through surface scanning of the study casts. Results: A cusp-to-central fossa relationship was observed from the lingual aspect in the majority of cases classified from the buccal aspect as Class I (89.6%) or mild Class II (86.7%). However, severe Class II cases had lingual cusp-to-mesial triangular fossa or marginal ridge relationships. Mean occlusal contact areas were similar in the Class I and mild Class II groups, while the severe Class II group had significantly lower values than either of the other 2 groups (p < 0.05). Conclusions: Buccal and lingual assessments of molar relationships were not always consistent. Occlusal contact areas were lowest for the Class II-severe group, which seems to have the worst molar relationships - especially as seen from the lingual aspect.

Development and Use of Digital Climate Models in Northern Gyunggi Province - I. Derivation of DCMs from Historical Climate Data and Local Land Surface Features (경기북부지역 정밀 수치기후도 제작 및 활용 - I. 수치기후도 제작)

  • 김성기;박중수;이은섭;장정희;정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

Accuracy Assessment of 3D Geo-positioning for SPOT-5 HRG Stereo Images Using Orbit-Attitude Model (궤도기반 모델을 이용한 SPOT-5 HGR 입체영상의 3차원 위치결정 정확도 평가)

  • Wie, Gwang-Jae;Kim, Deok-In;Lee, Ha-Joon;Jang, Yong-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.529-534
    • /
    • 2009
  • In this study, we investigate the feasibility of modeling entire image strips that has been acquired from the same orbital segments. We tested sensor models based on satellite orbit and attitude with different sets(Type1 ~ Type4) of unknowns. We checked the accuracy of orbit modeling by establishing sensor models of one scene using control points extracted from the scene and by applying the models to adjacent scenes within the same orbital segments. Results indicated that modeling of individual scenes with 1st or 2nd order unknowns was recommended. We tested the accuracy of around control points, digital map using the HIST-DPW (Hanjin Information Systems & Telecommunication Digital Photogrammetric Workstation) As a result, we showed that the orbit-based sensor model is a suitable sensor model for making 1/25,000 digital map.

Self-Sovereign Identity Management: A Comparative Study and Technical Enhancements

  • Noot A. Alissa;Waleed A. Alrodhan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.27-80
    • /
    • 2023
  • Nowadays usage of different applications of identity management IDM demands prime attention to clarify which is more efficient regarding preserve privacy as well as security to perform different operations concerning digital identity. Those operations represent the available interactions with identity during its lifecycle in the digital world e.g., create, update, delete, verify and so on. With the rapid growth in technology, this field has been evolving with a number of IDM models being proposed to ensure that identity lifecycle and face some significant issues. However, the control and ownership of data remines in the hand of identity service providers for central and federated approaches unlike in the self-sovereign identity management SSIM approach. SSIM is the recent IDM model were introduced to solve the issue regarding ownership of identity and storing the associated data of it. Thus, SSIM aims to grant the individual's ability to govern their identities without intervening administrative authorities or approval of any authority. Recently, we noticed that numerous IDM solutions enable individuals to own and control their identities in order to adapt with SSIM model. Therefore, we intend to make comparative study as much of these solutions that have proper technical documentation, reports, or whitepapers as well as provide an overview of IDM models. We will point out the existing research gaps and how this study will bridge it. Finally, the study will propose a technical enhancement, everKEY solution, to address some significant drawbacks in current SSIM solutions.