• Title/Summary/Keyword: Digital modeling

Search Result 1,539, Processing Time 0.034 seconds

The inference about the cause of death of Korean Fir in Mt. Halla through the analysis of spatial dying pattern - Proposing the possibility of excess soil moisture by climate changes - (한라산 구상나무 공간적 고사패턴 분석을 통한 고사원인 추정 - 기후변화에 따른 토양수분 과다 가능성 제안 -)

  • Ahn, Ung San;Kim, Dae Sin;Yun, Young Seok;Ko, Suk Hyung;Kim, Kwon Su;Cho, In Sook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.1-28
    • /
    • 2019
  • This study analyzed the density and mortality rate of Korean fir at 9 sites where individuals of Korean firs were marked into the live and dead trees with coordinates on orthorectified aerial images by digital photogrammetric system. As a result of the analysis, Korean fir in each site showed considerable heterogeneity in density and mortality rate depending on the location within site. This make it possible to assume that death of Korean fir can occur by specific factors that vary depending on the location. Based on the analyzed densities and mortality rates of Korea fir, we investigated the correlation between topographic factors such as altitude, terrain slope, drainage network, solar radiation, aspect and the death of Korean fir. The density of Korean fir increases with altitude, and the mortality rate also increases. A negative correlation is found between the terrain slope and the mortality rate, and the mortality rate is higher in the gentle slope where the drainage network is less developed. In addition, it is recognized that depending on the aspect, the mortality rate varies greatly, and the mean solar radiation is higher in live Korean fir-dominant area than in dead Korean fir-dominant area. Overall, the mortality rate of Korean fir in Mt. Halla area is relatively higher in areas with relatively low terrain slope and low solar radiation. Considering the results of previous studies that the terrain slope has a strong negative correlation with soil moisture and the relationship between solar radiation and evaporation, these results lead us to infer that excess soil moisture is the cause of Korean fir mortality. These inferences are supported by a series of climate change phenomena such as precipitation increase, evaporation decrease, and reduced sunshine duration in the Korean peninsula including Jeju Island, increase in mortality rate along with increased precipitation according to the elevation of Mt. Halla and the vegetation change in the mountain. It is expected that the spatial patterns in the density and mortality rate of Korean fir, which are controlled by topography such as altitude, slope, aspect, solar radiation, drainage network, can be used as spatial variables in future numerical modeling studies on the death or decline of Korean fir. In addition, the method of forest distribution survey using the orthorectified aerial images can be widely used as a numerical monitoring technique in long - term vegetation change research.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

Analysis of the Time-dependent Relation between TV Ratings and the Content of Microblogs (TV 시청률과 마이크로블로그 내용어와의 시간대별 관계 분석)

  • Choeh, Joon Yeon;Baek, Haedeuk;Choi, Jinho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.163-176
    • /
    • 2014
  • Social media is becoming the platform for users to communicate their activities, status, emotions, and experiences to other people. In recent years, microblogs, such as Twitter, have gained in popularity because of its ease of use, speed, and reach. Compared to a conventional web blog, a microblog lowers users' efforts and investment for content generation by recommending shorter posts. There has been a lot research into capturing the social phenomena and analyzing the chatter of microblogs. However, measuring television ratings has been given little attention so far. Currently, the most common method to measure TV ratings uses an electronic metering device installed in a small number of sampled households. Microblogs allow users to post short messages, share daily updates, and conveniently keep in touch. In a similar way, microblog users are interacting with each other while watching television or movies, or visiting a new place. In order to measure TV ratings, some features are significant during certain hours of the day, or days of the week, whereas these same features are meaningless during other time periods. Thus, the importance of features can change during the day, and a model capturing the time sensitive relevance is required to estimate TV ratings. Therefore, modeling time-related characteristics of features should be a key when measuring the TV ratings through microblogs. We show that capturing time-dependency of features in measuring TV ratings is vitally necessary for improving their accuracy. To explore the relationship between the content of microblogs and TV ratings, we collected Twitter data using the Get Search component of the Twitter REST API from January 2013 to October 2013. There are about 300 thousand posts in our data set for the experiment. After excluding data such as adverting or promoted tweets, we selected 149 thousand tweets for analysis. The number of tweets reaches its maximum level on the broadcasting day and increases rapidly around the broadcasting time. This result is stems from the characteristics of the public channel, which broadcasts the program at the predetermined time. From our analysis, we find that count-based features such as the number of tweets or retweets have a low correlation with TV ratings. This result implies that a simple tweet rate does not reflect the satisfaction or response to the TV programs. Content-based features extracted from the content of tweets have a relatively high correlation with TV ratings. Further, some emoticons or newly coined words that are not tagged in the morpheme extraction process have a strong relationship with TV ratings. We find that there is a time-dependency in the correlation of features between the before and after broadcasting time. Since the TV program is broadcast at the predetermined time regularly, users post tweets expressing their expectation for the program or disappointment over not being able to watch the program. The highly correlated features before the broadcast are different from the features after broadcasting. This result explains that the relevance of words with TV programs can change according to the time of the tweets. Among the 336 words that fulfill the minimum requirements for candidate features, 145 words have the highest correlation before the broadcasting time, whereas 68 words reach the highest correlation after broadcasting. Interestingly, some words that express the impossibility of watching the program show a high relevance, despite containing a negative meaning. Understanding the time-dependency of features can be helpful in improving the accuracy of TV ratings measurement. This research contributes a basis to estimate the response to or satisfaction with the broadcasted programs using the time dependency of words in Twitter chatter. More research is needed to refine the methodology for predicting or measuring TV ratings.

A Study of Guide System for Cerebrovascular Intervention (뇌혈관 중재시술 지원 가이드 시스템에 관한 연구)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Yoon, Kwon-Ha;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.101-107
    • /
    • 2016
  • Due to the recent advancement in digital imaging technology, development of intervention equipment has become generalize. Video arbitration procedure is a process to insert a tiny catheter and a guide wire in the body, so in order to enhance the effectiveness and safety of this treatment, the high-quality of x-ray of image should be used. However, the increasing of radiation has become the problem. Therefore, the studies to improve the performance of x-ray detectors are being actively processed. Moreover, this intervention is based on the reference of the angiographic imaging and 3D medical image processing. In this paper, we propose a guidance system to support this intervention. Through this intervention, it can solve the problem of the existing 2D medical images based vessel that has a formation of cerebrovascular disease, and guide the real-time tracking and optimal route to the target lesion by intervention catheter and guide wire tool. As a result, the system was completely composed for medical image acquisition unit and image processing unit as well as a display device. The experimental environment, guide services which are provided by the proposed system Brain Phantom (complete intracranial model with aneurysms, ref H+N-S-A-010) was taken with x-ray and testing. To generate a reference image based on the Laplacian algorithm for the image processing which derived from the cerebral blood vessel model was applied to DICOM by Volume ray casting technique. $A^*$ algorithm was used to provide the catheter with a guide wire tracking path. Finally, the result does show the location of the catheter and guide wire providing in the proposed system especially, it is expected to provide a useful guide for future intervention service.

A Study on the Effects of User Participation on Stickiness and Continued Use on Internet Community (인터넷 커뮤니티에서 사용자 참여가 밀착도와 지속적 이용의도에 미치는 영향)

  • Ko, Mi-Hyun;Kwon, Sun-Dong
    • Asia pacific journal of information systems
    • /
    • v.18 no.2
    • /
    • pp.41-72
    • /
    • 2008
  • The purpose of this study is the investigation of the effects of user participation, network effect, social influence, and usefulness on stickiness and continued use on Internet communities. In this research, stickiness refers to repeat visit and visit duration to an Internet community. Continued use means the willingness to continue to use an Internet community in the future. Internet community-based companies can earn money through selling the digital contents such as game, music, and avatar, advertizing on internet site, or offering an affiliate marketing. For such money making, stickiness and continued use of Internet users is much more important than the number of Internet users. We tried to answer following three questions. Fist, what is the effects of user participation on stickiness and continued use on Internet communities? Second, by what is user participation formed? Third, are network effect, social influence, and usefulness that was significant at prior research about technology acceptance model(TAM) still significant on internet communities? In this study, user participation, network effect, social influence, and usefulness are independent variables, stickiness is mediating variable, and continued use is dependent variable. Among independent variables, we are focused on user participation. User participation means that Internet user participates in the development of Internet community site (called mini-hompy or blog in Korea). User participation was studied from 1970 to 1997 at the research area of information system. But since 1997 when Internet started to spread to the public, user participation has hardly been studied. Given the importance of user participation at the success of Internet-based companies, it is very meaningful to study the research topic of user participation. To test the proposed model, we used a data set generated from the survey. The survey instrument was designed on the basis of a comprehensive literature review and interviews of experts, and was refined through several rounds of pretests, revisions, and pilot tests. The respondents of survey were the undergraduates and the graduate students who mainly used Internet communities. Data analysis was conducted using 217 respondents(response rate, 97.7 percent). We used structural equation modeling(SEM) implemented in partial least square(PLS). We chose PLS for two reason. First, our model has formative constructs. PLS uses components-based algorithm and can estimated formative constructs. Second, PLS is more appropriate when the research model is in an early stage of development. A review of the literature suggests that empirical tests of user participation is still sparse. The test of model was executed in the order of three research questions. First user participation had the direct effects on stickiness(${\beta}$=0.150, p<0.01) and continued use (${\beta}$=0.119, p<0.05). And user participation, as a partial mediation model, had a indirect effect on continued use mediated through stickiness (${\beta}$=0.007, p<0.05). Second, optional participation and prosuming participation significantly formed user participation. Optional participation, with a path magnitude as high as 0.986 (p<0.001), is a key determinant for the strength of user participation. Third, Network effect (${\beta}$=0.236, p<0.001). social influence (${\beta}$=0.135, p<0.05), and usefulness (${\beta}$=0.343, p<0.001) had directly significant impacts on stickiness. But network effect and social influence, as a full mediation model, had both indirectly significant impacts on continued use mediated through stickiness (${\beta}$=0.11, p<0.001, and ${\beta}$=0.063, p<0.05, respectively). Compared with this result, usefulness, as a partial mediation model, had a direct impact on continued use and a indirect impact on continued use mediated through stickiness. This study has three contributions. First this is the first empirical study showing that user participation is the significant driver of continued use. The researchers of information system have hardly studies user participation since late 1990s. And the researchers of marketing have studied a few lately. Second, this study enhanced the understanding of user participation. Up to recently, user participation has been studied from the bipolar viewpoint of participation v.s non-participation. Also, even the study on participation has been studied from the point of limited optional participation. But, this study proved the existence of prosuming participation to design and produce products or services, besides optional participation. And this study empirically proved that optional participation and prosuming participation were the key determinant for user participation. Third, our study compliments traditional studies of TAM. According prior literature about of TAM, the constructs of network effect, social influence, and usefulness had effects on the technology adoption. This study proved that these constructs still are significant on Internet communities.

The Impact of Perceived Risks Upon Consumer Trust and Purchase Intentions (인지된 위험의 유형이 소비자 신뢰 및 온라인 구매의도에 미치는 영향)

  • Hong, Il-Yoo B.;Kim, Woo-Sung;Lim, Byung-Ha
    • Asia pacific journal of information systems
    • /
    • v.21 no.4
    • /
    • pp.1-25
    • /
    • 2011
  • Internet-based commerce has undergone an explosive growth over the past decade as consumers today find it more economical as well as more convenient to shop online. Nevertheless, the shift in the common mode of shopping from offline to online commerce has caused consumers to have worries over such issues as private information leakage, online fraud, discrepancy in product quality and grade, unsuccessful delivery, and so forth, Numerous studies have been undertaken to examine the role of perceived risk as a chief barrier to online purchases and to understand the theoretical relationships among perceived risk, trust and purchase intentions, However, most studies focus on empirically investigating the effects of trust on perceived risk, with little attention devoted to the effects of perceived risk on trust, While the influence trust has on perceived risk is worth studying, the influence in the opposite direction is equally important, enabling insights into the potential of perceived risk as a prohibitor of trust, According to Pavlou (2003), the primary source of the perceived risk is either the technological uncertainty of the Internet environment or the behavioral uncertainty of the transaction partner. Due to such types of uncertainty, an increase in the worries over the perceived risk may negatively affect trust, For example, if a consumer who sends sensitive transaction data over Internet is concerned that his or her private information may leak out because of the lack of security, trust may decrease (Olivero and Lunt, 2004), By the same token, if the consumer feels that the online merchant has the potential to profit by behaving in an opportunistic manner taking advantage of the remote, impersonal nature of online commerce, then it is unlikely that the merchant will be trusted, That is, the more the probable danger is likely to occur, the less trust and the greater need to control the transaction (Olivero and Lunt, 2004), In summary, a review of the related studies indicates that while some researchers looked at the influence of overall perceived risk on trust level, not much attention has been given to the effects of different types of perceived risk, In this context the present research aims at addressing the need to study how trust is affected by different types of perceived risk, We classified perceived risk into six different types based on the literature, and empirically analyzed the impact of each type of perceived risk upon consumer trust in an online merchant and further its impact upon purchase intentions. To meet our research objectives, we developed a conceptual model depicting the nomological structure of the relationships among our research variables, and also formulated a total of seven hypotheses. The model and hypotheses were tested using an empirical analysis based on a questionnaire survey of 206 college students. The reliability was evaluated via Cronbach's alphas, the minimum of which was found to be 0.73, and therefore the questionnaire items are all deemed reliable. In addition, the results of confirmatory factor analysis (CFA) designed to check the validity of the measurement model indicate that the convergent, discriminate, and nomological validities of the model are all acceptable. The structural equation modeling analysis to test the hypotheses yielded the following results. Of the first six hypotheses (H1-1 through H1-6) designed to examine the relationships between each risk type and trust, three hypotheses including H1-1 (performance risk ${\rightarrow}$ trust), H1-2 (psychological risk ${\rightarrow}$ trust) and H1-5 (online payment risk ${\rightarrow}$ trust) were supported with path coefficients of -0.30, -0.27 and -0.16 respectively. Finally, H2 (trust ${\rightarrow}$ purchase intentions) was supported with relatively high path coefficients of 0.73. Results of the empirical study offer the following findings and implications. First. it was found that it was performance risk, psychological risk and online payment risk that have a statistically significant influence upon consumer trust in an online merchant. It implies that a consumer may find an online merchant untrustworthy if either the product quality or the product grade does not match his or her expectations. For that reason, online merchants including digital storefronts and e-marketplaces are suggested to pursue a strategy focusing on identifying the target customers and offering products that they feel best meet performance and psychological needs of those customers. Thus, they should do their best to make it widely known that their products are of as good quality and grade as those purchased from offline department stores. In addition, it may be inferred that today's online consumers remain concerned about the security of the online commerce environment due to the repeated occurrences of hacking or private information leakage. Online merchants should take steps to remove potential vulnerabilities and provide online notices to emphasize that their website is secure. Second, consumer's overall trust was found to have a statistically significant influence on purchase intentions. This finding, which is consistent with the results of numerous prior studies, suggests that increased sales will become a reality only with enhanced consumer trust.

True Orthoimage Generation from LiDAR Intensity Using Deep Learning (딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성)

  • Shin, Young Ha;Hyung, Sung Woong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.363-373
    • /
    • 2020
  • During last decades numerous studies generating orthoimage have been carried out. Traditional methods require exterior orientation parameters of aerial images and precise 3D object modeling data and DTM (Digital Terrain Model) to detect and recover occlusion areas. Furthermore, it is challenging task to automate the complicated process. In this paper, we proposed a new concept of true orthoimage generation using DL (Deep Learning). DL is rapidly used in wide range of fields. In particular, GAN (Generative Adversarial Network) is one of the DL models for various tasks in imaging processing and computer vision. The generator tries to produce results similar to the real images, while discriminator judges fake and real images until the results are satisfied. Such mutually adversarial mechanism improves quality of the results. Experiments were performed using GAN-based Pix2Pix model by utilizing IR (Infrared) orthoimages, intensity from LiDAR data provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the ISPRS (International Society for Photogrammetry and Remote Sensing). Two approaches were implemented: (1) One-step training with intensity data and high resolution orthoimages, (2) Recursive training with intensity data and color-coded low resolution intensity images for progressive enhancement of the results. Two methods provided similar quality based on FID (Fréchet Inception Distance) measures. However, if quality of the input data is close to the target image, better results could be obtained by increasing epoch. This paper is an early experimental study for feasibility of DL-based true orthoimage generation and further improvement would be necessary.

The Mediating Role of Perceived Risk in the Relationships Between Enduring Product Involvement and Trust Expectation (지속적 제품관여도와 소비자 요구신뢰수준 간의 영향관계: 인지된 위험의 매개 역할에 대한 실증분석을 중심으로)

  • Hong, Ilyoo B.;Kim, Taeha;Cha, Hoon S.
    • Asia pacific journal of information systems
    • /
    • v.23 no.4
    • /
    • pp.103-128
    • /
    • 2013
  • When a consumer needs a product or service and multiple sellers are available online, the process of selecting a seller to buy online from is complex since the process involves many behavioral dimensions that have to be taken into account. As a part of this selection process, consumers may set minimum trust expectation that can be used to screen out less trustworthy sellers. In the previous research, the level of consumers' trust expectation has been anchored on two important factors: product involvement and perceived risk. Product involvement refers to the extent to which a consumer perceives a specific product important. Thus, the higher product involvement may result in the higher trust expectation in sellers. On the other hand, other related studies found that when consumers perceived a higher level of risk (e.g., credit card fraud risk), they set higher trust expectation as well. While abundant research exists addressing the relationship between product involvement and perceived risk, little attention has been paid to the integrative view of the link between the two constructs and their impacts on the trust expectation. The present paper is a step toward filling this research gap. The purpose of this paper is to understand the process by which a consumer chooses an online merchant by examining the relationships among product involvement, perceived risk, trust expectation, and intention to buy from an e-tailer. We specifically focus on the mediating role of perceived risk in the relationships between enduring product involvement and the trust expectation. That is, we question whether product involvement affects the trust expectation directly without mediation or indirectly mediated by perceived risk. The research model with four hypotheses was initially tested using data gathered from 635 respondents through an online survey method. The structural equation modeling technique with partial least square was used to validate the instrument and the proposed model. The results showed that three out of the four hypotheses formulated were supported. First, we found that the intention to buy from a digital storefront is positively and significantly influenced by the trust expectation, providing support for H4 (trust expectation ${\rightarrow}$ purchase intention). Second, perceived risk was found to be a strong predictor of trust expectation, supporting H2 as well (perceived risk ${\rightarrow}$ trust expectation). Third, we did not find any evidence of direct influence of product involvement, which caused H3 to be rejected (product involvement ${\rightarrow}$ trust expectation). Finally, we found significant positive relationship between product involvement and perceived risk (H1: product involvement ${\rightarrow}$ perceived risk), which suggests that the possibility of complete mediation of perceived risk in the relationship between enduring product involvement and the trust expectation. As a result, we conducted an additional test for the mediation effect by comparing the original model with the revised model without the mediator variable of perceived risk. Indeed, we found that there exists a strong influence of product involvement on the trust expectation (by intentionally eliminating the variable of perceived risk) that was suppressed (i.e., mediated) by the perceived risk in the original model. The Sobel test statistically confirmed the complete mediation effect. Results of this study offer the following key findings. First, enduring product involvement is positively related to perceived risk, implying that the higher a consumer is enduringly involved with a given product, the greater risk he or she is likely to perceive with regards to the online purchase of the product. Second, perceived risk is positively related to trust expectation. A consumer with great risk perceptions concerning the online purchase is likely to buy from a highly trustworthy online merchant, thereby mitigating potential risks. Finally, product involvement was found to have no direct influence on trust expectation, but the relationship between the two constructs was indirect and mediated by the perceived risk. This is perhaps an important theoretical integration of two separate streams of literature on product involvement and perceived risk. The present research also provides useful implications for practitioners as well as academicians. First, one implication for practicing managers in online retail stores is that they should invest in reducing the perceived risk of consumers in order to lower down the trust expectation and thus increasing the consumer's intention to purchase products or services. Second, an academic implication is that perceived risk mediates the relationship between enduring product involvement and trust expectation. Further research is needed to elaborate the theoretical relationships among the constructs under consideration.

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.