• Title/Summary/Keyword: Digital integrated circuits

Search Result 93, Processing Time 0.021 seconds

An Analysis of the Limit Cycle Oscillation in Digital PID Controlled DC-DC Converters

  • Chang, Changyuan;Hong, Chao;Zhao, Xin;Wu, Cheng'en
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.686-694
    • /
    • 2017
  • Due to the wide use of electronic products, digitally controlled DC-DC converters are attracting more and more attention in recent years. However, digital control strategies may introduce undesirable Limit Cycle Oscillation (LCO) due to quantization effects in the Analog-to-Digital Converter (ADC) and Digital Pulse Width Modulator (DPWM). This results in decreases in the quality of the output voltage and the efficiency of the system. Meanwhile, even if the resolution of the DPWM is finer than that of the ADC, LCO may still exist due to improper parameters of the digital compensator. In order to discover how LCO is generated, the state space averaging model is applied to derive equilibrium equations of a digital PID controlled DC-DC converter in this paper. Furthermore, the influences of the parameters of the digital PID compensator, and the resolutions of the ADC and DPWM on LCO are studied in detail. The amplitude together with the period of LCO as well as the corresponding PID parameters are obtained. Finally, MATLAB/Simulink simulations and FPGA verifications are carried out and no-LCO conditions are obtained.

An Application of CMOS Gate Array Integrated Circuits to Switching Network and Digital Line Concentrator (스위칭 네트워크와 디지털 접선 장치에서의 CMOS 게이트 어레이 IC 적용)

  • 박항구;박권철;조용현
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.652-657
    • /
    • 1987
  • This paper describes an application of CMOS Gate Array Integrated Cricuits to the implementation of three functional units: A Multiplexer, Time Switch, and Demultiplexer in the Switching Network and Digital Line Concentrator of TDX-1 system, which is a fully digital time division electronic switching system in Korea. The application of CMOS Gate Array Integrated Circuits significantly improves the overall system performance in terms of power consumption, cost, size, reliability, and timing margin, etc.

  • PDF

Analysis and Design of a Separate Sampling Adaptive PID Algorithm for Digital DC-DC Converters

  • Chang, Changyuan;Zhao, Xin;Xu, Chunxue;Li, Yuanye;Wu, Cheng'en
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2212-2220
    • /
    • 2016
  • Based on the conventional PID algorithm and the adaptive PID (AD-PID) algorithm, a separate sampling adaptive PID (SSA-PID) algorithm is proposed to improve the transient response of digitally controlled DC-DC converters. The SSA-PID algorithm, which can be divided into an oversampled adaptive P (AD-P) control and an adaptive ID (AD-ID) control, adopts a higher sampling frequency for AD-P control and a conventional sampling frequency for AD-ID control. In addition, it can also adaptively adjust the PID parameters (i.e. $K_p$, $K_i$ and $K_d$) based on the system state. Simulation results show that the proposed algorithm has better line transient and load transient responses than the conventional PID and AD-PID algorithms. Compared with the conventional PID and AD-PID algorithms, the experimental results based on a FPGA indicate that the recovery time of the SSA-PID algorithm is reduced by 80% and 67% separately, and that overshoot is decreased by 33% and 12% for a 700mA load step. Moreover, the SSA-PID algorithm can achieve zero overshoot during startup.

Design of A 1'${\times}$1', 512${\times}$512 Poly-Si TFT-LCD with Integrated 8-bit Parallel-Serial Digital Data Drivers

  • Shin, Won-Chul;Lee, Seung-Woo;Chung, Hoon-Ju;Han, Chul-Hi
    • Journal of Information Display
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2001
  • A $1"{\times}l"$, $512{\times}512$ poly-Si TFT-LCD with a new integrated 8-bit parallel-serial digital data driver was proposed and designed. For high resolution, the proposed parallel-serial digital driver used serial video data rather than parallel ones. Thus, digital circuits for driving one column line could be integrated within very small width. The parallel-serial digital data driver comprised of shift registers, latches, and serial digital-to-analog converters (DAC's). We designed a $1"{\times}l"$, $512{\times}512$ poly-Si TFT-LCD with integrated 8-bit parallel-serial digital data drivers by a circuit simulator which has physical-based analytical model of poly-Si TFT's. The fabricated shift register well operated at 2 MHz and $V_{DD}$=10V and the fabricated poly-Si TFT serial DAC's, which converts serial digital data to an analog signal, could convert one bit within $2.8{\mu}s$. The driver circuits for one data line occupied $8100{\times}50{\mu}m^2$ with $4{\mu}m$ design rule.

  • PDF

Design and implementation of a base station modulator ASIC for CDMA cellular system (CDMA 이동통신 시스템용 기지국 변조기 ASIC 설계 및 구현)

  • Kang, In;Hyun, Jin-Il;Cha, Jin-Jong;Kim, Kyung-Soo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.2
    • /
    • pp.1-11
    • /
    • 1997
  • We developed a base station modulator ASIC for CDMA digital cellular system. In CDMA digital cellular system, the modulation is performed by convolutional encoding and QPSK with spread spectrum. The function blocks of base station modulator are CRC, convolutional encoder, interleaver pseudo-moise scrambler, power control bit puncturing, walsh cover, QPSK, gain controller, combiner and multiplexer. Each function block was designed by the logic synthesis of VHDL codes. The VHDL code was described at register transfer level and the size of code is about 8,000 lines. The circuit simulation and logic simulation were performed by COMPASS tools. The chip (ES-C2212B CMB) contains 25,205 gates and 3 Kbit SRAM, and its chip size is 5.25 mm * 5,45 mm in 0.8 mm CMOS cell-based design technology. It is packaged in 68 pin PLCC and the power dissipation at 10MHz is 300 mW at 5V. The ASIC has been fully tested and successfully working on the CDMA base station system.

  • PDF

Design of Compensated Digital Interface Circuits for Capacitive Pressure Sensor (용량형 압력센서용 디지탈 보상 인터페이스 회로설계)

  • Lee, Youn-Hee;Sawada, Kouji;Seo, Hee-Don;Choi, Se-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.63-68
    • /
    • 1996
  • In order to implement the integrated capacitive pressure sensors, which contains integrated interface circuits to detect the electrical output signal, several main factors that have a bad effect on the characteristics of sensors must be improved, such as parasitic capacitance effects, temperature/thermal drift, and the leakage current of a readout circuitry. This paper describes the novel design of the dedicated CMOS readout circuitry that is consists of two capacitance to frequency converters and 4 bit digital logic compensating circuits. Dividing the oscillation frequency of a sensing sensor by that of reference sensor, this circuit is designed to eliminate the thermal/temperature drift and the effect of the leakage currents, and to access a digital signals to obtain a high signal-to-noise(S/N)ratio. Therefore, the resolution of this circuit can be increased by increasing the number of the digital bits. Digital compensated circuits of this circuits, except for the C-F converters, are fabricated on a FPGA chip, and fundamental performance of the circuits are evaluated.

  • PDF

LOW DIRECT-PATH SHORT CIRCUIT CURRENT OF THE CMOS DIGITAL DRIVER CIRCUIT

  • Parnklang, Jirawath;Manasaprom, Ampaul;Laowanichpong, Nut
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.970-973
    • /
    • 2003
  • Abstract An idea to redce the direct-path short circuit current of the CMOS digital integrated circuit is present. The sample circuit model of the CMOS digital circuit is the CMOS current-control digital output driver circuit, which are also suitable for the low voltage supply integrated circuits as the simple digital inverter, are present in this title. The circuit consists of active MOS load as the current control source, which construct from the saturated n-channel and p-channel MOSFET and the general CMOS inverter circuits. The saturated MOSFET bias can control the output current and the frequency response of the circuit. The experimental results show that lower short circuit current control can make the lower frequency response of the circuit.

  • PDF

Study on the Design of S/PDIF BC which Can Operate without PLL (PLL없이 동작하는 S/PDIF IC 설계에 관한 연구)

  • Park Ju-Sung;Kim Suk-Chan;Kim Kyoung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2005
  • In this paper, we deal with the research about a S/PDIF (Sony Philips Digital Interface) receiver which can operate without PLL (Phase Locked Loop) circuits. Although a S/PDIF receiver is used in most audio devices and audio processors in these days. yet there are only few domestic researches about S/PDIF. Currently used commercial DACs (Digital-to-Analog Converters) which can decode S/PDIF signals, have a PLL circuit inside them. The PLL makes it possible to extract clock information from S/PDIF digital signal and to synchronize a clock signal with input signals. But the PLL circuit makes many diffculties in designing the SOC (System On Chips) of VLSIs (Vew Large Scale Integrated Ciruits) because it is an "analog circuit". We proposed a S/PDIF receiver which doesn't have PLL circuits and only has Pure digital circuits. The key idea of the proposed S/PDIF receiver. is to use the ratio between a 16 MHz basic input clock and S/PDIF signals. After having decoded hundreds thousands S/PDIF inputs, it went to prove that a S/PDIF receiver can be designed with pure digital circuits and without any analog circuits such as PLL circuits. We have confidence that the proposed S/PDIF receiver can be used as an IP (Intellectual Property) for the SOC design of the digital circuits.

Embedded RF Test Circuits: RF Power Detectors, RF Power Control Circuits, Directional Couplers, and 77-GHz Six-Port Reflectometer

  • Eisenstadt, William R.;Hur, Byul
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • Modern integrated circuits (ICs) are becoming an integrated parts of analog, digital, and radio frequency (RF) circuits. Testing these RF circuits on a chip is an important task, not only for fabrication quality control but also for tuning RF circuit elements to fit multi-standard wireless systems. In this paper, RF test circuits suitable for embedded testing are introduced: RF power detectors, power control circuits, directional couplers, and six-port reflectometers. Various types of embedded RF power detectors are reviewed. The conventional approach and our approach for the RF power control circuits are compared. Also, embedded tunable active directional couplers are presented. Then, six-port reflectometers for embedded RF testing are introduced including a 77-GHz six-port reflectometer circuit in a 130 nm process. This circuit demonstrates successful calibrated reflection coefficient simulation results for 37 well distributed samples in a Smith chart. The details including the theory, calibration, circuit design techniques, and simulations of the 77-GHz six-port reflectometer are presented in this paper.

An FPGA-Based Modified Adaptive PID Controller for DC/DC Buck Converters

  • Lv, Ling;Chang, Changyuan;Zhou, Zhiqi;Yuan, Yubo
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.346-355
    • /
    • 2015
  • On the basis of the conventional PID control algorithm, a modified adaptive PID (MA-PID) control algorithm is presented to improve the steady-state and dynamic performance of closed-loop systems. The proposed method has a straightforward structure without excessively increasing the complexity and cost. It can adaptively adjust the values of the control parameters ($K_p$, $K_i$ and $K_d$) by following a new control law. Simulation results show that the line transient response of the MA-PID is better than that of the adaptive digital PID because the differential coefficient $K_d$ is introduced to changes. In addition, experimental results based on a FPGA indicate that the MA-PID control algorithm reduces the recovery time by 62.5% in response to a 1V line transient, 50% in response to a 500mA load transient, and 23.6% in response to a steady-state deviation, when compared with the conventional PID control algorithm.