• Title/Summary/Keyword: Digital imagery

Search Result 335, Processing Time 0.02 seconds

Advanced LWIR Thermal Imaging Sight Design (원적외선 2세대 열상조준경의 설계)

  • Hong, Seok-Min;Kim, Hyun-Sook;Park, Yong-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.209-216
    • /
    • 2005
  • A new second generation advanced thermal imager, which can be used for battle tank sight has been developed by ADD. This system uses a $480\times6$ TDI HgCdTe detector, operating in the $7.7-10.3{\mu}m$ wavelength made by Sofradir. The IR optics has dual field of views such as $2.67\times2^{\circ}$ in NFOV and $10\times7.5^{\circ}$ in WFOV. And also, this optics is used for athermalization of the system. It is certain that our sensor can be used in wide temperature range without any degradation of the system performance. The scanning system to be able to display 470,000 pixels is developed so that the pixel number is greatly increased comparing with the first generation thermal imaging system. In order to correct non-uniformity of detector arrays, the two point correction method has been developed by using the thermo electric cooler. Additionally, to enhance the image of low contrast and improve the detection capability, we have proposed the new technique of histogram processing being suitable for the characteristics of contrast distribution of thermal imagery. Through these image processing techniques, we obtained the highest quality thermal image. The MRTD of the LWIR thermal sight shows good results below 0.05K at spatial frequency 2 cycles/mrad at the narrow field of view.

Generation of Land Surface Temperature Orthophoto and Temperature Accuracy Analysis by Land Covers Based on Thermal Infrared Sensor Mounted on Unmanned Aerial Vehicle (무인항공기에 탑재된 열적외선 센서 기반의 지표면 온도 정사영상 제작 및 피복별 온도 정확도 분석)

  • Park, Jin Hwan;Lee, Ki Rim;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.263-270
    • /
    • 2018
  • Land surface temperature is known to be an important factor in understanding the interactions of the ground-atmosphere. However, because of the large spatio-temporal variability, regular observation is rarely made. The existing land surface temperature is observed using satellite images, but due to the nature of satellite, it has the limit of long revisit period and low accuracy. In this study, in order to confirm the possibility of replacing land surface temperature observation using satellite imagery, images acquired by TIR (Thermal Infrared) sensor mounted on UAV (Unmanned Aerial Vehicle) are used. The acquired images were transformed from JPEG (Joint Photographic Experts Group) to TIFF (Tagged Image File Format) format and orthophoto was then generated. The DN (Digital Number) value of orthophoto was used to calculate the actual land surface temperature. In order to evaluate the accuracy of the calculated land surface temperature, the land surface temperature was compared with the land surface temperature directly observed with an infrared thermometer at the same time. When comparing the observed land surface temperatures in two ways, the accuracy of all the land covers was below the measure accuracy of the TIR sensor. Therefore, the possibility of replacing the satellite image, which is a conventional land surface temperature observation method, is confirmed by using the TIR sensor mounted on UAV.

Extraction of Water Depth in Coastal Area Using EO-1 Hyperion Imagery (EO-1 Hyperion 영상을 이용한 연안해역의 수심 추출)

  • Seo, Dong-Ju;Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.716-723
    • /
    • 2008
  • With rapid development of science and technology and recent widening of mankind's range of activities, development of coastal waters and the environment have emerged as global issues. In relation to this, to allow more extensive analyses, the use of satellite images has been on the increase. This study aims at utilizing hyperspectral satellite images in determining the depth of coastal waters more efficiently. For this purpose, a partial image of the research subject was first extracted from an EO-1 Hyperion satellite image, and atmospheric and geometric corrections were made. Minimum noise fraction (MNF) transformation was then performed to compress the bands, and the band most suitable for analyzing the characteristics of the water body was selected. Within the chosen band, the diffuse attenuation coefficient Kd was determined. By deciding the end-member of pixels with pure spectral properties and conducting mapping based on the linear spectral unmixing method, the depth of water at the coastal area in question was ultimately determined. The research findings showed the calculated depth of water differed by an average of 1.2 m from that given on the digital sea map; the errors grew larger when the water to be measured was deeper. If accuracy in atmospheric correction, end-member determination, and Kd calculation is enhanced in the future, it will likely be possible to determine water depths more economically and efficiently.

Efficient Methodology in Markov Random Field Modeling : Multiresolution Structure and Bayesian Approach in Parameter Estimation (피라미드 구조와 베이지안 접근법을 이용한 Markove Random Field의 효율적 모델링)

  • 정명희;홍의석
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.147-158
    • /
    • 1999
  • Remote sensing technique has offered better understanding of our environment for the decades by providing useful level of information on the landcover. In many applications using the remotely sensed data, digital image processing methodology has been usefully employed to characterize the features in the data and develop the models. Random field models, especially Markov Random Field (MRF) models exploiting spatial relationships, are successfully utilized in many problems such as texture modeling, region labeling and so on. Usually, remotely sensed imagery are very large in nature and the data increase greatly in the problem requiring temporal data over time period. The time required to process increasing larger images is not linear. In this study, the methodology to reduce the computational cost is investigated in the utilization of the Markov Random Field. For this, multiresolution framework is explored which provides convenient and efficient structures for the transition between the local and global features. The computational requirements for parameter estimation of the MRF model also become excessive as image size increases. A Bayesian approach is investigated as an alternative estimation method to reduce the computational burden in estimation of the parameters of large images.

Characteristics of Remote Sensors on KOMPSAT-I (다목적 실용위성 1호 탑재 센서의 특성)

  • 조영민;백홍렬
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Korea Aerospace Research Institute(KARI) is developing a Korea Multi-Purpose Satellite I(KOMPSAT-I) which accommodates Electro-Optical Camera(EOC), Ocean Color Imager(OCI), Space Physics Sensor(SPS) for cartography, ocean color monitoring, and space environment monitoring respectively. The satellite has the weight of about 500 kg and is operated on the sun synchronized orbit with the altitude of 685km, the orbit period of 98 minutes, and the orbit revisit time of 28days. The satellite will be launched in the third quarter of 1999 and its lifetime is more than 3 years. EOC has cartography mission to provide images for the production of scale maps, including digital elevation models, of Korea from a remote earth view in the KOMPSAT orbit. EOC collects panchromatic imagery with the ground sample distance(GSD) of 6.6m and the swath width of 15km at nadir through the visible spectral band of 510-730 nm. EOC scans the ground track of 800km per orbit by push-broom and body pointed method. OCI mission is worldwide ocean color monitoring for the study of biological oceanography. OCI is a multispectral imager generating 6 color ocean images with and <1km GSD by whisk-broom scanning method. OCI is designed to provide on-orbit spectral band selectability in the spectral range from 400nm to 900nm. The color images are collected through 6 primary spectral bands centered at 443, 490, 510, 555, 670, 865nm or 6 spectral bands selected in the spectral range via ground commands after launch. SPS consists of High Energy Particle Detector(HEPD) and Ionosphere Measurement Sensor(IMS). HEPD has mission to characterize the low altitude high energy particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities in KOMPSAT orbit.

Geostatistical Integration of Ground Survey Data and Secondary Data for Geological Thematic Mapping (지질 주제도 작성을 위한 지표 조사 자료와 부가 자료의 지구통계학적 통합)

  • Park, No-Wook;Jang, Dong-Ho;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.581-593
    • /
    • 2006
  • Various geological thematic maps have been generated by interpolating sparsely sampled ground survey data and geostatistical kriging that can consider spatial correlation between neighboring data has widely been used. This paper applies multi-variate geostatistical algorithms to integrate secondary information with sparsely sampled ground survey data for geological thematic mapping. Simple kriging with local means and kriging with an external drift are applied among several multi-variate geostatistical algorithms. Two case studies for spatial mapping of groundwater level and grain size have been carried out to illustrate the effectiveness of multi-variate geostatistical algorithms. A digital elevation model and IKONOS remote sensing imagery were used as secondary information in two case studies. Two multi-variate geostatistical algorithms, which can account for both spatial correlation of neighboring data and secondary data, showed smaller prediction errors and more local variations than those of ordinary kriging and linear regression. The benefit of applying the multi-variate geostatistical algorithms, however, depends on sampling density, magnitudes of correlation between primary and secondary data, and spatial correlation of primary data. As a result, the experiment for spatial mapping of grain size in which the effects of those factors were dominant showed that the effect of using the secondary data was relatively small than the experiment for spatial mapping of groundwater level.

Analysis of Shoreline Change Using Multi-temporal Remote Sensed Data on Songjeong Beach, Busan (다중시기 원격탐사 자료를 이용한 부산 송정해수욕장의 해안선 변화 분석)

  • Jang, Dong-Ho;Kim, Jang-Soo;Baek, Seung-Gyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.59-71
    • /
    • 2012
  • This research was carried out to analyze long-term shoreline change on Busan Songjeong Beach using multi-temporal remote sensed data, GPS survey data and grain size analysis. As a result of multi-temporal satellite imagery analysis, the beach was stable status till early 2000s, but the erosion occurred over whole beach after the construction of shore protection road since 2000. In the result of DEM analysis, the elevation of beach reduced and the slope of berm increased after construction of shore protection road along the coast, this means the erosion environment was dominant on the beach. But the sedimentation was slightly stronger than the erosion in northern region of the beach, then the slope of berm was gentle. In the result of grain size analysis using in-situ samples, the coarsening-trend was found in southeastern region (Line E) of the beach, it is caused by strong wave energy from the outer sea. Consequently, major causes of the beach erosion in the study area were the interception of sand supply from a dune owing to shore protection road construction and scouring phenomenon by strong wave energy in southeastern region of the beach. If the topographic or artificial change will not occur in the future, the erosion in this area will continue. Therefore the prevention measures are required.

Implementation of virtual reality for interactive disaster evacuation training using close-range image information (근거리 영상정보를 활용한 실감형 재난재해 대피 훈련 가상 현실 구현)

  • KIM, Du-Young;HUH, Jung-Rim;LEE, Jin-Duk;BHANG, Kon-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.140-153
    • /
    • 2019
  • Cloase-range image information from drones and ground-based camera has been frequently used in the field of disaster mitigation with 3D modeling and mapping. In addition, the utilization of virtual reality(VR) is being increased by implementing realistic 3D models with the VR technology simulating disaster circumstances in large scale. In this paper, we created a VR training program by extracting realistic 3D models from close-range images from unmanned aircraft and digital camera on hand and observed several issues occurring during the implementation and the effectiveness in the case of a VR application in training for disaster mitigation. First of all, we built up a scenario of disaster and created 3D models after image processing with the close-range imagery. The 3D models were imported into Unity, a software for creation of augmented/virtual reality, as a background for android-based mobile phones and VR environment was created with C#-based script language. The generated virtual reality includes a scenario in which the trainer moves to a safe place along the evacuation route in the event of a disaster, and it was considered that the successful training can be obtained with virtual reality. In addition, the training through the virtual reality has advantages relative to actual evacuation training in terms of cost, space and time efficiencies.

Development of Plant Phenology and Snow Cover Detection Technique in Mountains using Internet Protocol Camera System (무인카메라 기반 산악지역 식물계절 및 적설 탐지 기술 개발)

  • Keunchang, Jang;Jea-Chul, Kim;Junghwa, Chun;Seokil, Jang;Chi Hyeon, Ahn;Bong Cheol, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • Plant phenology including flowering, leaf unfolding, and leaf coloring in a forest is important to understand the forest ecosystem. Temperature rise due to recent climate change, however, can lead to plant phenology change as well as snowfall in winter season. Therefore, accurate monitoring of forest environment changes such as plant phenology and snow cover is essential to understand the climate change effect on forest management. These changes can monitor using a digital camera system. This paper introduces the detection methods for plant phenology and snow cover at the mountain region using an unmanned camera system that is a way to monitor the change of forest environment. In this study, the Automatic Mountain Meteorology Stations (AMOS) operated by Korea Forest Service (KFS) were selected as the testbed sites in order to systematize the plant phenology and snow cover detection in complex mountain areas. Multi-directional Internet Protocol (IP) camera system that is a kind of unmanned camera was installed at AMOS located in Seoul, Pyeongchang, Geochang, and Uljin. To detect the forest plant phenology and snow cover, the Red-Green-Blue (RGB) analysis based on the IP camera imagery was developed. The results produced by using image analysis captured from IP camera showed good performance in comparison with in-situ data. This result indicates that the utilization technique of IP camera system can capture the forest environment effectively and can be applied to various forest fields such as secure safety, forest ecosystem and disaster management, forestry, etc.

Application of Geo-Segment Anything Model (SAM) Scheme to Water Body Segmentation: An Experiment Study Using CAS500-1 Images (수체 추출을 위한 Geo-SAM 기법의 응용: 국토위성영상 적용 실험)

  • Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.343-350
    • /
    • 2024
  • Since the release of Meta's Segment Anything Model (SAM), a large-scale vision transformer generation model with rapid image segmentation capabilities, several studies have been conducted to apply this technology in various fields. In this study, we aimed to investigate the applicability of SAM for water bodies detection and extraction using the QGIS Geo-SAM plugin, which enables the use of SAM with satellite imagery. The experimental data consisted of Compact Advanced Satellite 500 (CAS500)-1 images. The results obtained by applying SAM to these data were compared with manually digitized water objects, Open Street Map (OSM), and water body data from the National Geographic Information Institute (NGII)-based hydrological digital map. The mean Intersection over Union (mIoU) calculated for all features extracted using SAM and these three-comparison data were 0.7490, 0.5905, and 0.4921, respectively. For features commonly appeared or extracted in all datasets, the results were 0.9189, 0.8779, and 0.7715, respectively. Based on analysis of the spatial consistency between SAM results and other comparison data, SAM showed limitations in detecting small-scale or poorly defined streams but provided meaningful segmentation results for water body classification.