• Title/Summary/Keyword: Digital equipment

Search Result 1,033, Processing Time 0.038 seconds

A Study on Realistic Interface Elements for Improving the Flow in Screen Golf (스크린골프의 몰입 향상을 위한 실감 인터페이스 요소 연구)

  • Doo, Kyungil
    • Journal of Industrial Convergence
    • /
    • v.19 no.1
    • /
    • pp.71-77
    • /
    • 2021
  • Screen Golf provides a more realistic interface to users by implementing sophisticated sensors and 3D graphics so that they can play golf in an environment almost identical to the actual golf course, to provide a sense of reality that goes beyond simply enjoying golf indoors. In addition, users who experienced this interface environment showed a tendency to feel the fun of golf more and become more immersed in golf. Therefore, it is most important to provide an effective realistic interface in screen golf. In this study, the meaning of screen golf as a tangible sport and various interface elements embodied in screen golf were summarized. Also the factors that enable users to feel reality and fun of actual golf to make users more immersed in screen golf were identified. For this, interface elements based on sensory elements were arranged in terms of visual, auditory, and tactile sense, and improvement plans and directions for providing effective sensory interfaces for screen golf were suggested through user FGI, targeting regular customers of Golfzone and KakaoVX screen golf, and in-depth interviews with experts. As a result of the analysis, it was confirmed that the course information including the yardage and the play situation-directed graphic are elements that make immersion in the visual aspect. In terms of tactile aspect, the fact that users actually use golf equipment, as well as the sense of existence of a physical interface that embodies various course environments and course setting appeared to be an important factor. In particular, in the auditory aspect, it was confirmed that providing customized services for each user through AI caddy implemented to resemble a actual caddy is the most effective way to immerse users in screen golf with greater fun and realism.

Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs (마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석)

  • Kang, Jeong-Eun;Yoo, Ji-Yoon;Choi, In-Kyu;YU, Jae Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.

A Study on the Industrial Competitiveness Analysis of Domestic Autonomous Operation Technology Industry Based on the Porter's Diamond Model (국내 자율운항기술 분야의 산업경쟁력 분석 연구 - 포터(Porter)의 다이아몬드 모델을 기반으로)

  • PARK, Hye-Ri;PARK, Han-Seon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.203-208
    • /
    • 2022
  • Recently, various digital technology issues such as e-Navigation, Maritime Autonomous Surface Ship (MASS) and Smart ships have constantly emerged in the maritime industry, based on the fourth industrial revolution. The International Maritime Organization is gradually tightening regulations for marine safety and marine environmental protection, and these strengthened regulations are leading to new maritime industries. Thus, the purpose of this study was to design a suitable model to analyze the industrial competitiveness of domestic autonomous operation technology industry, based on the Porter's diamond model. Based on a total of five evaluation factors and 13 detailed factors, the industrial competitiveness of the domestic autonomous operation technology industry was evaluated qualitatively and quantitatively. This industry, which is in the early stage of industrial development, was evaluated as 16.9 points relative to indexing industrial competitiveness. Currently, it is characterized by the simultaneous development of related regulations and core technologies, from the establishment of the scope of the industry. The industrial competitiveness evaluation considering these industrial characteristics is expected to serve as the basis for strategic support and new industrial policy, and impact a wide range of related industries such as shipping, logistics, ports, and shipbuilding and equipment industries.

Fit Tests for Second-class Half Masks (2급 방진마스크 밀착도 평가)

  • Cho, Kee Hong;Kim, Hyun Soo;Choi, Ah Rum;Chun, Ji Young;Kang, Tae Won;Kim, Min Su;Park, Kyeong Hak;Kim, Ze One
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.146-152
    • /
    • 2022
  • Objectives: The purpose of this study is to confirm whether there is a factor to affect the evaluation of fit test of a 2nd class half masks using a OPC test method. Methods: Total 34 adults including Males and Females were tested using OPC-based fit testing equipment while wearing a 2nd class half filtered mask. Results: 1. The result of measuring face dimensions using different tools such as a 3D scanner and digital calipers revealed that the variation of lip width was not statistically significant because there was only a difference of about 4 mm. However, it showed that a difference in face length was statistically significant enough with 10 mm(p<0.000). 2. The fit factor for each exercise stage according to gender was the highest at 124.54(p<0.001) in Step 3, and the fit factor was the lowest at 73.75 in Step 1. 3. In the evaluation of the degree of fit factor according to gender, female passed 67.44%, which was higher than the value in male(p<0.038). 4. The acceptance rate of the group having a face length of shorter than 110 mm was 91.67%. On the other hand, the acceptance rate of the group with a face length of longer than 110 mm was 47.27%(p<0.000). 5. The fit test was possible because the fit factor with 2nd class half masks corresponding to FFP1(Filtering Face Piece 1) was passed 55% or more. Conclusions: The test results showed that using a 2nd class half filtered mask, it is important to wear a properly designed mask so that face size does not affect the fit factor.

The Play World Structure of EBS Character "Pengsu" (EBS 캐릭터 '펭수'의 놀이세계 구조)

  • Kim, Jeong-Seob
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.267-275
    • /
    • 2020
  • Even ordinary-looking plays can have a profound meaning. Based on this assumption, Eugene Pink (1960) has established an analytical model of play with five elements, namely "delight", "meaning", "community", "rules" and "tools." It was an effort to reflect on the true meaning of play beyond the cortical entertaining nature of play. In this study, it was carried out that all the texts containing images and performance from the EBS character "Pengsu" were selected, since he emerged as a new star in 2019. And also his play structure was analyzed by applying the Pink's model. As a result, Pengsu's play structure was confirmed to be systematic and complete as a play prototype because it was well-organized with five elements of play. It was regarded as a successful character that skillfully attracts participants to the play world. Among the components of the play, "fun" was found to be his funny appearance, sudden and unconventional behavior, "meaning" was the elimination of authoritarianism, self-esteeming and energizing, "community" was a multi-platform media user who crossed off-on-line, analog-digital-line, "rules" was to set his concept fixed as a young stranger with an ego to unreveal his identity, and "tools" was shown as his character itself and continual discourse. It shows that until now, Pengsu has a social net function of quite spreading the positive meaning of encouragement and comfort, advice and guide, consideration and forgiveness, introspection and nirvana to all members of our society, including the youth who are struggling with uncertainty and anxiety by showing rather exaggerated and stimulating performance that precisely combines these play elements.

Mathematical Algorithms for the Automatic Generation of Production Data of Free-Form Concrete Panels (비정형 콘크리트 패널의 생산데이터 자동생성을 위한 수학적 알고리즘)

  • Kim, Doyeong;Kim, Sunkuk;Son, Seunghyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.565-575
    • /
    • 2022
  • Thanks to the latest developments in digital architectural technologies, free-form designs that maximize the creativity of architects have rapidly increased. However, there are a lot of difficulties in forming various free-form curved surfaces. In panelizing to produce free forms, the methods of mesh, developable surface, tessellation and subdivision are applied. The process of applying such panelizing methods when producing free-form panels is complex, time-consuming and requires a vast amount of manpower when extracting production data. Therefore, algorithms are needed to quickly and systematically extract production data that are needed for panel production after a free-form building is designed. In this respect, the purpose of this study is to propose mathematical algorithms for the automatic generation of production data of free-form panels in consideration of the building model, performance of production equipment and pattern information. To accomplish this, mathematical algorithms were suggested upon panelizing, and production data for a CNC machine were extracted by mapping as free-form curved surfaces. The study's findings may contribute to improved productivity and reduced cost by realizing the automatic generation of data for production of free-form concrete panels.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

The Study of Digitalization of Analog Gauge using Image Processing (이미지 처리를 이용한 아날로그 게이지 디지털화에 관한 연구)

  • Seon-Deok Kim;Cherl-O Bae;Kyung-Min Park;Jae-Hoon Jee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.389-394
    • /
    • 2023
  • In recent years, use of machine automation is rising in the industry. Ships also obtain machine condition information from sensor as digital information. However, on ships, crew members regularly surveil the engine room to check the condition of equipment and their information through analog gauges. This is a time-consuming and tedious process and poses safety risks to the crew while on surveillance. To address this, engine room surveillance using an autonomous mobile robot is being actively explored as a solution because it can reduce time, costs, and the safety risks for crew. Analog gauge reading using an autonomous mobile robot requires digitization for the robot to recognize the gauge value. In this study, image processing techniques were applied to achieve this. Analog gauge images were subjected to image preprocessing to remove noise and highlight their features. The center point, indicator point, minimum value and maximum value of the analog gauge were detected through image processing. Through the straight line connecting these points, the angle from the minimum value to the maximum value and the angle from the minimum value to indicator point were obtained. The obtained angle is digitized as the value currently indicated by the analog gauge through a formula. It was confirmed from the experiments that the digitization of the analog gauge using image processing was successful, indicating the equivalent current value shown by the gauge. When applied to surveillance robots, this algorithm can minimize safety risks and time and opportunity costs of crew members for engine room surveillance.

Journal of Knowledge Information Technology and Systems (스마트축사 활용 가상센서 기술 설계 및 구현)

  • Hyun Jun Kim;Park Man Bok;Meong Hun Lee
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.55-62
    • /
    • 2023
  • Innovation and change are occurring rapidly in the agriculture and livestock industry, and new technologies such as smart bams are being introduced, and data that can be used to control equipment is being collected by utilizing various sensors. However, there are various challenges in the operation of bams, and virtual sensor technology is needed to solve these challenges. In this paper, we define various data items and sensor data types used in livestock farms, study cases that utilize virtual sensors in other fields, and implement and design a virtual sensor system for the final smart livestock farm. MBE and EVRMSE were used to evaluate the finalized system and analyze performance indicators. As a result of collecting and managing data using virtual sensors, there was no obvious difference in data values from physical sensors, showing satisfactory results. By utilizing the virtual sensor system in smart livestock farms, innovation and efficiency improvement can be expected in various areas such as livestock operation and livestock health status monitoring. This paper proposes an innovative method of data collection and management by utilizing virtual sensor technology in the field of smart livestock, and has obtained important results in verifying its performance. As a future research task, we would like to explore the connection of digital livestock using virtual sensors.

3D Simulation Study to Develop Automated System for Robotic Application in Food Sorting and Packaging Processes (식품계량 및 포장 공정 로봇 적용 자동화 시스템 개발을 위한 3D 시뮬레이션 연구)

  • Seunghoon Baek;Seung Eel Oh;Ki Hyun Kwon;Tae Hyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.230-238
    • /
    • 2023
  • Small and medium-sized food manufacturing enterprises are largely reliant on manual labor, from inputting raw materials to palletizing the final product. Recently, there has been a trend toward smartness and digitization through the implementation of robotics and sensor data technology. In this study, we examined the effectiveness of improvement through 3D simulation on two repetitive work processes within a food manufacturing company. These processes involve workers whose speed cannot match the capacity of the applied equipment. Two manual processes were selected: the weighing and packing process performed by workers after skewer assembly, and the manual batch process of counting randomly delivered frozen foods, packing (both internal and external), and palletizing. The production volume, utilization rate, and number of workers were chosen as verification indicators. As a result of the simulation for improving the 3D process, production increased by 13.5% and 56.8% compared to the existing process, respectively. This was particularly evident in the process of applying palletizing robots. In both processes, as the utilization rate and number of input workers decreased, robots could replace tasks with high worker fatigue, thereby reducing work overload. This study demonstrates the potential to visually compare the process flow improvement using 3D simulations and confirms the possibility of pre-validation for improvement.