• Title/Summary/Keyword: Digital Spatial Color

Search Result 74, Processing Time 0.025 seconds

Digital spatial color study from the perspective of Goethe's color theory (괴테의 『색채론』 관점에서 본 디지털 공간색채 연구)

  • Sun, So-Hyun;Kim, Seung-In
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.491-498
    • /
    • 2022
  • Based on Goethe's color theory, this study presented concepts and classification methods through the following research methods for the purpose of defining sensory, emotional, and experiential colors as spatial colors in digital space. First, the concept of spatial color is defined through theoretical consideration and three (3) types of spatial color are classified as the surface, outline, and physical colors. Secondly, the study includes the characteristics of digital space and color sensory type. Third, based on the identified color sensory type through the previous theoretical consideration, the four (4) categorized digital spatial color were derived and presented as techno Chromatic, S.E.N.S.E, pixel, and blur colors were determined and proposed. Based on such research contents, this study is meaningful in that it systematized the meaning of Goethe's color theory in the present age through digital spatial color.

A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information (슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

Analysis of the spectroscopic characteristics of Ground color images using a digital camera (디지털 카메라를 활용한 컬러 지상영상의 분광학적 특성 분석)

  • Ko, In-Chul;Seo, Su-Young
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.137-144
    • /
    • 2010
  • Ground digital image data obtained by using DSLR camera can be used to the ground photogrammetry and spatial modeling. Intensity of each pixel in digital video images is the most important parameter to generate digital image. Therefore, it is needed to estimate the parameters and spectral characteristics of digital cameras in order to take more definite intensity data. In this study, using the Sony DSC-F828 DSLR camera, seven digital images are obtained by the continuous shooting. (frame rate, 0.38 seconds). And then extract the value of the intensity from RGB band of each digital color photographs to confirm difference of intensity between frames. The purpose of this study is to confirm spectral characteristics and changes and to estimate correlation through the analysis of statistical in each pixel of R, G, B band.

  • PDF

Effects of spatial resolution on digital image to detect pine trees damaged by pine wilt disease

  • Lee, Seung-Ho;Cho, Hyun-Kook
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.260-263
    • /
    • 2005
  • This study was carried out to investigate the effects of spatial resolutions on digital image for detecting pine trees damaged by pine wilt disease. Color infrared images taken from PKNU-3 multispectral airborne photographing system with a spatial resolution of 50cm was used as a basic data. Further test images with spatial resolutions of 1m, 2m and 4m were made from the basic data to test the detecting capacity on each spatial resolution. The test was performed with visual interpretation both on mono and stereo modus and compared with field surveying data. It can be conclude that it needs less than 1m spational resolutions or 1m spatial resolutions with stereo pair in order to detect pine trees damaged by pine wilt disease.

  • PDF

A Study on Application of Illumination Models for Color Constancy of Objects (객체의 색상 항등성을 위한 조명 모델 응용에 관한 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.125-133
    • /
    • 2017
  • Color in an image is determined by illuminant and surface reflectance. So, to recover unique color of object, estimation of exact illuminant is needed. In this study, the illumination models suggested to get the object color constancy with the physical illumination model based on physical phenomena. Their characteristics and application limits are presented and the necessity of an extended illumination model is suggested to get more appropriate object colors recovered. The extended illumination model should contain an additional term for the ambient light in order to account for spatial variance of illumination in object images. Its necessity is verified through an experiment under simple lighting environment in this study. Finally, a reconstruction method for recovering input images under standard white light illumination is experimented and an useful method for computing object color reflectivity is suggested and experimented which can be induced from combination of the existing illumination models.

Design of a Mapping Framework on Image Correction and Point Cloud Data for Spatial Reconstruction of Digital Twin with an Autonomous Surface Vehicle (무인수상선의 디지털 트윈 공간 재구성을 위한 이미지 보정 및 점군데이터 간의 매핑 프레임워크 설계)

  • Suhyeon Heo;Minju Kang;Jinwoo Choi;Jeonghong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.143-151
    • /
    • 2024
  • In this study, we present a mapping framework for 3D spatial reconstruction of digital twin model using navigation and perception sensors mounted on an Autonomous Surface Vehicle (ASV). For improving the level of realism of digital twin models, 3D spatial information should be reconstructed as a digitalized spatial model and integrated with the components and system models of the ASV. In particular, for the 3D spatial reconstruction, color and 3D point cloud data which acquired from a camera and a LiDAR sensors corresponding to the navigation information at the specific time are required to map without minimizing the noise. To ensure clear and accurate reconstruction of the acquired data in the proposed mapping framework, a image preprocessing was designed to enhance the brightness of low-light images, and a preprocessing for 3D point cloud data was included to filter out unnecessary data. Subsequently, a point matching process between consecutive 3D point cloud data was conducted using the Generalized Iterative Closest Point (G-ICP) approach, and the color information was mapped with the matched 3D point cloud data. The feasibility of the proposed mapping framework was validated through a field data set acquired from field experiments in a inland water environment, and its results were described.

Complex Color Model for Efficient Representation of Color-Shape in Content-based Image Retrieval (내용 기반 이미지 검색에서 효율적인 색상-모양 표현을 위한 복소 색상 모델)

  • Choi, Min-Seok
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.267-273
    • /
    • 2017
  • With the development of various devices and communication technologies, the production and distribution of various multimedia contents are increasing exponentially. In order to retrieve multimedia data such as images and videos, an approach different from conventional text-based retrieval is needed. Color and shape are key features used in content-based image retrieval, which quantifies and analyzes various physical features of images and compares them to search for similar images. Color and shape have been used as independent features, but the two features are closely related in terms of cognition. In this paper, a method of describing the spatial distribution of color using a complex color model that projects three-dimensional color information onto two-dimensional complex form is proposed. Experimental results show that the proposed method can efficiently represent the shape of spatial distribution of colors by frequency transforming the complex image and reconstructing it with only a few coefficients in the low frequency.

Spatial Histograms for Region-Based Tracking

  • Birchfield, Stanley T.;Rangarajan, Sriram
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.697-699
    • /
    • 2007
  • Spatiograms are histograms augmented with spatial means and covariances to capture a richer description of the target. We present a particle filtering framework for region-based tracking using spatiograms. Unlike mean shift, the framework allows for non-differentiable similarity measures to compare two spatiograms; we present one such similarity measure, a combination of a recent weighting scheme and histogram intersection. Experimental results show improved performance with the new measure as well as the importance of global spatial information for tracking. The performance of spatiograms is compared with color histograms and several texture histogram methods.

  • PDF

Content-based Image Retrieval using Spatial-Color and Gabor Texture on A Mobile Device (모바일 디바이스상에서 공간-칼라와 가버 질감을 이용한 내용-기반 영상 검색)

  • Lee, Yong-Hwan;Lee, June-Hwan;Cho, Han-Jin;Kwon, Oh-Kin;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • Mobile image retrieval is one of the most exciting and fastest growing research fields in the area of multimedia technology. As the amount of digital contents continues to grow users are experiencing increasing difficulty in finding specific images in their image libraries. This paper proposes a new efficient and effective mobile image retrieval method that applies a weighted combination of color and texture utilizing spatial-color and second order statistics. The system for mobile image searches runs in real-time on an iPhone and can easily be used to find a specific image. To evaluate the performance of the new method, we assessed the iPhone simulations performance in terms of average precision and recall using several image databases and compare the results with those obtained using existing methods. Experimental trials revealed that the proposed descriptor exhibited a significant improvement of over 13% in retrieval effectiveness, compared to the best of the other descriptors.

A methodology for spatial distribution of grain and voids in self compacting concrete using digital image processing methods

  • Onal, Okan;Ozden, Gurkan;Felekoglu, Burak
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.61-74
    • /
    • 2008
  • Digital image processing algorithms for the analysis and characterization of grains and voids in cemented materials were developed using toolbox functions of a mathematical software package. Utilization of grayscale, color and watershed segmentation algorithms and their performances were demonstrated on artificially prepared self-compacting concrete (SCC) samples. It has been found that color segmentation was more advantageous over the gray scale segmentation for the detection of voids whereas the latter method provided satisfying results for the aggregate grains due to the sharp contrast between their colors and the cohesive matrix. The watershed segmentation method, on the other hand, appeared to be very efficient while separating touching objects in digital images.