• Title/Summary/Keyword: Digital Radiography image

Search Result 277, Processing Time 0.024 seconds

An Assessment of the Accuracy for Digital Radiography Image (디지털 방사선투과영상의 정밀성 평가에 관한 연구)

  • Park, Sang-Ki;Ahn, Yean-Shik;Gil, Doo-Song
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.51-56
    • /
    • 2009
  • Film based radiography imaging technique has been applied to the non-destructive test in medical, aircraft, and power industries contributing to the development of the industries. However, the complex process for imaging and analysis has increasingly demanded the reformation of the radiography test. A digital radiography imaging technologies has been com out from the demand. This study was mainly focused on the assessment on the accuracy for the each image from digital radiography test and film radiography test was proven to crate a better image in sensitivity than film radiography test. In the IQI(Image quality indicator) transmission test, one or two more line can be seen in digital image than in film image. When applying to the boiler tube weld, film image is detectable to the 1.0mm depth flaw; and digital image to the 0.5mm depth flaw. As a result of this study, digital radiography technology is determined to enhance the image quality, compared to film radiography technologies

The Study on image correction of geometric distortion in digital radiography image (방사선투과영상의 기하학적 왜곡 보정에 관한 연구)

  • Park, S.K.;Ahn, Y.S.;Gil, D.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.25-30
    • /
    • 2011
  • This study is made to provide with a method for correcting the geometric distortion of the digital radiography image by analytical approach based upon the inverse square law and Beer's law. This study is aimed to find out and improve a mathematic model of nonlinear type. Variations in the alignment of the X-ray source, the object, and imaging plate affect digital radiography images. A model which is expressed in parameter values; e.g, angle, position, absorption coefficient, length, width and pixel account of radiography source, is developed so as to match the sample image. For the best correction of the digital image that is the most similar to the model image, a correction technique based upon tangent is developed; then applied to the digital radiography images of steel tubes. As a result, the image correction is confirmed to be made successfully.

The Study on Image Sensitivity Evaluation For Digital Radiography Image (디지털 방사선 투과영상의 식별도 평가 연구)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.70-77
    • /
    • 2008
  • The purpose of this study is to compare the quality of digital radiography image with that of classical film images for welded structure in power plants. The CMOS(Complementary Metal Oxide Semiconductor) flat panel detecter and Agfa D5 film are used to image flaw specimens respectively. In the test, CMOS flat panel detector has been determined to have a better image than that of film image. In the IQI(Image Quality Indicator) transmission test, one or two more line can be seen in digital image than in film image. Digital Radiography Test enabled to successfully detect all defects on the weld specimens fabricated with real reheat stem pipe and boiler tube as well. In the specific comparison test, Digital radiography test detected micro flaws in the size of 0.5 mm in length by 0.5 mm in depth. However, film test has limited it to 1.0 mm in length by 1.0 mm in depth. As a result of this study, digital radiography technology is estimated well enough to perform the inspection in the industry with far more cost effective way, compared to the classical film test.

  • PDF

COMPARATIVE STUDY OF DIGITAL AND CONVENTIONAL RADIOGRAPHY FOR THE DIAGNOSTIC ABILITY OF ARTIFICIAL PROXIMAL SURFACE CARIES (디지털방사선사진과 구내방사선사진의 인접면 인공우식진단능에 관한 비교연구)

  • Cho, Young-Gon;Park, Si-Seung
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • Conventional intraoral radiography continues to be the most widely used image modality for the diagnosis of dental caries. But, conventional intraoral radiography has several shortcomings, including the difficulty of exposing and processing intraoral film of consistently acceptable quality. In addition, radiographic retaking that was the result of processing errors, may result in increased discomfort and radiation dose to the patient. Recently, various digital radiographies substitute for conventional intraoral radiography to overcome these disadvantages. The advantages of digital radiography are numerous. One of advantages Is the elimination of processing errors. In addition, the radiation dose for digital system is approximately 20% to 25% of that required for conventional intraoral radiography Another potential advantage of digital imaging is the ability to perform image quality enhancements such as contrast and density modulation, which may increase diagnostic accuracy. The purpose of this study was to compare the diagnostic ability of artificial proximal defects to conventional intraoral radiography, direct digital image(CDX2000HQ$^{\circledR}$) and indirect digital image(Digora$^{\circledR}$). Artificial defects were made in proximal surfaces of 60 extracted human molars using #1/2, #1, #2 round bur. Five dentists assessed proximal defects on conventional intraoral radiography, direct digital image(CDX2000HQ$^{\circledR}$) and indirect digital image(Digora$^{\circledR}$). ROC(Receiver Operating Characteristic) analysis and Two-way ANOVA test were used for the evaluation of detectability, and following results were acquired. 1. The mean ROC area of conventional intraoral radiography, direct digital image(CDX2000HQ$^{\circledR}$) and indirect digital Image(Digora$^{\circledR}$) were 0.6766, 0.7538, 0.6791(Grade I), 0.7176, 0.7594, 0.7361(Grade II), and 0.7449, 0.7608, 0.7414(Grade III), respectively. 2. Diagnostic ability of direct digital image was higher than other image modalities. But, there was no statistically significant difference among other imaging modalities for Grade I, II, III lesion(p>0.05). In conclusion, when direct and indirect digital system are comparable with conventional intraoral radiography. these systems may be considered an alternative of conventional intraoral radiography for the diagnosis of proximal surface caries.

A Study on Dose and Image Quality according to X-ray Photon Detection Method in Digital Radiography System (Digital Radiography System에서 X선 광자 검출 방식에 따른 선량 및 화질 특성에 관한 연구)

  • Hong, Sun Suk;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.247-253
    • /
    • 2013
  • The purpose is a comparative evaluation in the DR System according to the dosimetry and image quality of the quantitative and objective via Direct digital radiography, Indirect digital radiography, Image intensifier (Charge Coupled Device type) digital radiography. The experimental method used rando phantom and measured the entrance surface dose. And through using the measured entrance surface dose and then using the PCXMC program were evaluated risk due to irradiation and the effective dose. SNR and NPS and CNR were measured and analyzed by using 21cm acryl phantom. Significance of measured value was evaluated by statistics method. Entrance surface dose, major organ dose, effective dose all of them were measured the lowest rated in direct DR when it is on the basis of direct DR dose, high-dose ratio were measured in I.I DR approximately 1.3 times, indirect DR approximately 2.4 times. Risk in accordance with radiation also was measured same as dose ratio. On the conclusion that SNR measurement result based on direct DR SNR measurements, low-SNR ratio were measured in I.I DR approximately 7.25 times, indirect DR approximately 1.48 times. On the conclusion that CNR measurement result based on direct DR CNR measurements, high-dose ratio were measured in I.I type DR approximately 1.16 tims and low-dose ratio were measured in indirect DR approximately 0.87 times. Therefore Direct DR system using a-selenium sensing element to detect x-ray photon is thought effectively at the examination such as infant to sensitive irradiation and the genital gland. Because quality image is built by low dose. Also when it is necessary that image test requiring many diagnosis information, indirect DR system is thought effectively.

Study of Image Properties for Computed Radiography (Computed Radiography의 영상특성에 관한 연구)

  • Ryu, Ki-Hyun;Jung, Jae-Eun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.2
    • /
    • pp.23-31
    • /
    • 2008
  • Computed radiography(CR) has been widely used in the field of diagnostic radiography since digital X-ray image was introduced. The imaging performance of CR system was studied by analyzing the digital image data of the CR images which are the outcomes of the whole imaging system composed of image plate(IP), laser digitizer, analoge-digital convertor, and a given image processing unit. In this study, we used a conventional CR system made by Agfa. From the flat field image of 150$\times$150 image pixels, signal-to-noise ratio(SNR) was calculated. SNR of the CR image increases in proportion to logarithm value of the X-ray exposure irradiated on the IP. SNR is less than about 6 at the exposure below 0.2mR and is more than 10 at the exposure above 0.54mR. In our study, most of images obtained by the smaller exposures less than 2.0mR can not be readable. In general, the minimum value of the SNR ranges from 3 to 5. We obtained modulation transfer function(MTF) by analyzing the bar pattern image which was made under conditions as follows: X-ray tube potential was 55kVp, the IP exposure was 0.54 mR, and the distance between X-ray source to IP was 2m, where bar pattern was located on the IP. MTF is 23% at 2.5lp/mm spatial frequency. Provided that the MTF of noise equivalent modulation is 10%, the CR system has the limiting spatial resolution of 3.2lp/mm. If the image sharpness is evaluated by the spatial frequency where MTF is 50%. the corresponding spatial frequency is 0.5$\sim$0.75lp/mm. MTFA(Modulation Transfer Function Area) is 1.0lp/mm. Compared with the Fuji CR whose MTFA is 1.1lp/mm, Agfa CR in this study shows almost same MTFA performance.

  • PDF

The Study about the Positioning Block Artifact in Digital Radiography Environment (Digital Radiography 환경에서 Positioning Block Artifact에 관한 연구)

  • Kim, Byung-Ki;Choi, Jun-Gu;Lee, Jun;Lee, Min-Woo;Kim, Sun-Bae;Kim, Gyeong-Su
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • Purpose : In sponge quality of the material in digital radiography environment coating because do position blocks two that do not become coating done positioning blocks two that do not become coating done positioning block and sponge quality of the material to testing bench image artifact's difference compare. Method of study : In digital radiography environment positioning block of different two products same sunshine or effect that image and positioning block artifact gents in image analyze. the target used positioning block 2 when examine hand, rib and examination condition did each differently according to used positioning block. reflex compared picture that do image and verify that examine first time. Result : 1. In sponge quality of the material coating in done product artifact appear. Did not appear in product that do not become coating. 2. Can know coating's existence, that artifact according to radish happens. 3. Quality of the material coating's existence, there was difference of slippage according to radish Conclusion : Quality of the material coating phenomenon that done positioning block thus, it may have to be considered that use after estimate degree that get in image.

  • PDF

DR Image Enhancement Using Multiscale Non-Linear Gain Control For Laplacian Pyramid Transformation (라플라시안 피라미드에서의 다중스케일 비선형 이득 조절을 이용한 DR 영상 개선)

  • Shin, Dong-Kyu;Lee, Jin-Su;Kim, Sung-Hee;Park, In-Sung;Kim, Dong-Youn
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.199-204
    • /
    • 2007
  • In digital radiography, to improve the contrast of digital radiography image, the multi-scale nonlinear amplification algorithm based on unsharp masking is one of the major image enhancement algorithms. In this paper, we used the Laplacian pyramid to decompose a digital radiography(DR) image. In our simulation, the DR image was decomposed into seven layers and the coefficients of the each layer was amplified with nonlinear function. We also imported a noise containment algorithm to limit noise amplification. To enhance the contrast of image, we proposed a new adaptive non-linear gain amplification coefficients. As a result of having applied to some clinical data, a detail visibility was improved significantly without unacceptable noise boosting. Images that acquired with the proposed adaptive non-linear gain coefficients have shown superior quality to those that applied similar gain control method and expected to be accepted in the clinical applications.

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.

The Comparison of Image Quality between Computed Radiography(CR) and Direct Digital Radiography(DDR) which Follows the Proper Exposure Conditions in General Photographing under the Digital Radiography (Digital Radiography 환경하에서 일반촬영시 적정노출조건에 따른 CR과 DDR의 Image Quality 비교)

  • Kim Jin Bae;Kang Chung Hwan;Kang Sung Jin;Park Soo In;Park Jong Won;Kim Yeong Su
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.27 no.2
    • /
    • pp.22-34
    • /
    • 2001
  • DR은 방사선과 뿐만 아니라 병원전체의 생산성 및 업무의 효율성에서 중요한 요소로 자리잡아가고 있다. DR환경은 CR보다 다양한 Parameter를 가지고 있어 양질의 의료서비스 제공이 가능하다. 현재 각 병원의 방사선과는 Film-Screen system에서 Full-PACS를 통한 DR 환경으로 변화하고 있다. Full- PACS를 사용하고 있는 본원에서는 DR환경에서의 일반촬영 System중 CR과 DDR의 최적노출조건과 그에 따른 Image qu

  • PDF