• Title/Summary/Keyword: Digital Image Correlation System

Search Result 119, Processing Time 0.026 seconds

Research of Phase Correlation Method for Identifying Quantitative Similarity in Adjacent Real-time Streaming Frame

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.157-157
    • /
    • 2017
  • To minimize the damage by wild birds and acquire the benefits such as protection against weeds and maintenance of water content in soil, the mulching black color vinyl after seeding should be carried out. Non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. Non-linear integral interpolation was one of method for analyzing the frequency using the normalization image and then arbitrarily increasing the limited data value of $16{\times}4pixels$ in one frame. It was a method to relatively reduce the size of overlapping pixels by arbitrarily increasing the limited data value. The splitted frames into 0.1 units instead of 1 pixel can propose more than 10 times more accurate and original method than the existing correction method. The non-integral calibration method was conducted by applying the subdivision method to the pixels to find the optimal correction resolution based on the first reversed frequency. In order to find a correct resolution, the expected location of the first crop was indicated on near pixel 4 in the inversion frequency. For the most optimized resolution, the pixel was divided by 0.4 pixel instead of one pixel to find out where the lowest frequency exists.

  • PDF

DSP Embedded Early Fire Detection Method Using IR Thermal Video

  • Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3475-3489
    • /
    • 2014
  • Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.

Comparison of field- and satellite-based vegetation cover estimation methods

  • Ko, Dongwook W.;Kim, Dasom;Narantsetseg, Amartuvshin;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.34-44
    • /
    • 2017
  • Background: Monitoring terrestrial vegetation cover condition is important to evaluate its current condition and to identify potential vulnerabilities. Due to simplicity and low cost, point intercept method has been widely used in evaluating grassland surface and quantifying cover conditions. Field-based digital photography method is gaining popularity for the purpose of cover estimate, as it can reduce field time and enable additional analysis in the future. However, the caveats and uncertainty among field-based vegetation cover estimation methods is not well known, especially across a wide range of cover conditions. We compared cover estimates from point intercept and digital photography methods with varying sampling intensities (25, 49, and 100 points within an image), across 61 transects in typical steppe, forest steppe, and desert steppe in central Mongolia. We classified three photosynthetic groups of cover important to grassland ecosystem functioning: photosynthetic vegetation, non-photosynthetic vegetation, and bare soil. We also acquired normalized difference vegetation index from satellite image comparison with the field-based cover. Results: Photosynthetic vegetation estimates by point intercept method were correlated with normalized difference vegetation index, with improvement when non-photosynthetic vegetation was combined. For digital photography method, photosynthetic and non-photosynthetic vegetation estimates showed no correlation with normalized difference vegetation index, but combining of both showed moderate and significant correlation, which slightly increased with greater sampling intensity. Conclusions: Results imply that varying greenness is playing an important role in classification accuracy confusion. We suggest adopting measures to reduce observer bias and better distinguishing greenness levels in combination with multispectral indices to improve estimates on dry matter.

Estimation of Person Height and 3D Location using Stereo Tracking System (스테레오 추적 시스템을 이용한 보행자 높이 및 3차원 위치 추정 기법)

  • Ko, Jung Hwan;Ahn, Sung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • In this paper, an estimation of person height and 3D location of a moving person by using the pan/tilt-embedded stereo tracking system is suggested and implemented. In the proposed system, face coordinates of a target person is detected from the sequential input stereo image pairs by using the YCbCr color model and phase-type correlation methods and then, using this data as well as the geometric information of the stereo tracking system, distance to the target from the stereo camera and 3-dimensional location information of a target person are extracted. Basing on these extracted data the pan/tilt system embedded in the stereo camera is controlled to adaptively track a moving person and as a result, moving trajectory of a target person can be obtained. From some experiments using 780 frames of the sequential stereo image pairs, it is analyzed that standard deviation of the position displacement of the target in the horizontal and vertical directions after tracking is kept to be very low value of 1.5, 0.42 for 780 frames on average, and error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 0.5% on average. These good experimental results suggest a possibility of implementation of a new stereo target tracking system having a high degree of accuracy and a very fast response time with this proposed algorithm.

A Generation of Digital Elevation Model for GSIS using SPOT Satellite Imagery (GSIS의 자료기반 구축을 위한 SPOT 위성영상으로부터의 수치표고모형 생성)

  • Yeu, Bock-Mo;Park, Hong-Gi;Jeong, Soo;Kim, Won-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.141-152
    • /
    • 1993
  • This study aims to generate digital elevation model from digital satellite imagery. Digital elevation model is being increasingly used for geo-spatial information system database development and for digital map production. Image matching technique was applied to acquire conjugate image coordinates and the algorithm for digital elevation model generation is presented in this study The exterior orientation parameters of the satellite imagery is determined by bundle adjustment and standard correlation was applied for image matching conjugate of image points. The window as well as the searching area have to be defined in image matching. Different sizes of searching area were tested to study the appropriate size of the searching area. Various coordinate transformation methods were applied to improve the computation speed as well as the geometric accuracy. The results were then statistically analysed after which the searching area is determined with the safety factor. To evaluate the accuracy of digital elevation model, 3-D coordinates were extracted from 1/5000 scale topographic map and this was compared to the digital elevation model generated from satellite imagery. The algorithm for generation of digital elevation model generated from satellite imagery is presented in this study which will prove effective in the database development of geo-spatial information system and in digital elevation modelling of large areas.

  • PDF

A Comparative Study of Quantitative Assessment of Bone Mineral Density of the Mandible (하악골 골염도의 정량적 평가에 관한 비교연구)

  • Park Won-Kyl;Choi Eui-Hwan;Kim Jae-Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.161-173
    • /
    • 1999
  • This study was performed to compare the bone mineral densities measured at mandibular premolar area by copper-equivalent image and hydroxyapatite phantom with those measured at radius by dual energy absorptiometry and to evaluate the clinical usefulness of Digital system with slide scanner, copper-equivalent image, and hydroxyapatite phantom. For experiment. intraoral radiograms of 15 normal subjects ranged from 20 years old to 67 old were taken with copper-step wedge at mandibular premolar area and bone mineral densities calculated by conversion equation to bone mineral density of hydroxyapatite were compared with those measured at radius distal 1/3 area by Hologic QDR-1000. Obtained results as follows: 1) The conversion equation was Y=5.97X-0.25 and its determination coefficient was 0.9967. The coefficient of variation in the measurement of copper-equivalent value ranged from 4% to 8% and showed high reproducibility. 2) The coefficient of variation in the measurement of bone mineral density by the equation ranged from 7% to 8% and showed high reproducibility. 3) The bone mineral densities ranged from 0.35 to 0.79g/cm2 at mandibular premolararea. 4) The correlation coefficient between bone mineral densities at mandibular premolar area and those at radius distal 1/3 area was 0.8965. As summary, digital image analyzing system using copper-equivalent image and hydroxyapatite phantom appeared to be clinically useful to measure the bone mineral density at dental area.

  • PDF

MPEG-2 Video Watermarking in Quantized DCT Domain (양자화된 DCT 영역에서의 MPEG-2 비디오 워터마킹)

  • Im, Yong-Soon;Kang, Eun-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.81-86
    • /
    • 2011
  • Watermarking is one of the methods that insist on a copyright as it append digital signals in digital informations.(image, video, ets) In this paper, we proposed a digital watermarking algorithm which improved Gradient of DCT Coefficient. This method targets MPEG-2 TM5 system and watermarking process is to be performed during Quantization DCT. Watermark was inserted on Y components of each frames. The PSNR difference between the compressed images with and without watermarking was only 0..23dB. In each case that the resulting image was reusable the normalized correlation between the extracted watermark and the original one was above 0.99.

A Hierarchical Bilateral-Diffusion Architecture for Color Image Encryption

  • Wu, Menglong;Li, Yan;Liu, Wenkai
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.59-74
    • /
    • 2022
  • During the last decade, the security of digital images has received considerable attention in various multimedia transmission schemes. However, many current cryptosystems tend to adopt a single-layer permutation or diffusion algorithm, resulting in inadequate security. A hierarchical bilateral diffusion architecture for color image encryption is proposed in response to this issue, based on a hyperchaotic system and DNA sequence operation. Primarily, two hyperchaotic systems are adopted and combined with cipher matrixes generation algorithm to overcome exhaustive attacks. Further, the proposed architecture involves designing pixelpermutation, pixel-diffusion, and DNA (deoxyribonucleic acid) based block-diffusion algorithm, considering system security and transmission efficiency. The pixel-permutation aims to reduce the correlation of adjacent pixels and provide excellent initial conditions for subsequent diffusion procedures, while the diffusion architecture confuses the image matrix in a bilateral direction with ultra-low power consumption. The proposed system achieves preferable number of pixel change rate (NPCR) and unified average changing intensity (UACI) of 99.61% and 33.46%, and a lower encryption time of 3.30 seconds, which performs better than some current image encryption algorithms. The simulated results and security analysis demonstrate that the proposed mechanism can resist various potential attacks with comparatively low computational time consumption.

Drift error compensation for vision-based bridge deflection monitoring

  • Tian, Long;Zhang, Xiaohong;Pan, Bing
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.649-657
    • /
    • 2019
  • Recently, an advanced video deflectometer based on the principle of off-axis digital image correlation was presented and advocated for remote and real-time deflection monitoring of large engineering structures. In engineering practice, measurement accuracy is one of the most important technical indicators of the video deflectometer. However, it has been observed in many outdoor experiments that data drift often presents in the measured deflection-time curves, which is caused by the instability of imaging system and the unavoidable influences of ambient interferences (e.g., ambient light changes, ambient temperature variations as well as ambient vibrations) in non-laboratory conditions. The non-ideal unstable imaging conditions seriously deteriorate the measurement accuracy of the video deflectometer. In this work, to perform high-accuracy deflection monitoring, potential sources for the drift error are analyzed, and a drift error model is established by considering these error sources. Based on this model, a simple, easy-to-implement yet effective reference point compensation method is proposed for real-time removal of the drift error in measured deflections. The practicality and effectiveness of the proposed method are demonstrated by in-situ deflection monitoring of railway and highway bridges.

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.