• Title/Summary/Keyword: Digester Temperature

Search Result 49, Processing Time 0.021 seconds

Conversion of an Anaerobic Digester to Thermophilic Range (혐기성소화조(嫌氣性消和槽)의 고온(高溫)에로의 전환(轉換))

  • Chang, Duk;Chung, Tai Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.21-28
    • /
    • 1986
  • Conversion of anaerobic mesophilic digestion to thermophilic range has been investigated using a synthetic sludge. When temperature was raised at a rate of 2, 1, and $0.5^{\circ}C$ per day with continuous feeding, a lower reaction rate was observed with a high rate of temperature change. Although methane fermentation ceased completely for an digesters at thermophilic temperature, acid fermentation continued. Methane fermentation was never achieved even with neutralization during 6 months of resting. The methane formers were completely inactivated by the temperature shock and accumulation of volatile acids due to continuous feeding, while the acid formers lost biological activity quickly, but gradually acclimated to a high temperature. When temperature was raised without feeding, successful thermophilic digestion was achieved with 1 day of resting at thermophilic temperature at a rate of $1^{\circ}C$ per day, and also achieved with 20 days of resting at a direct increase. Conversion to a thermophilic range is easily achieved with resting. A short period of resting is required at a low rate of temperature increase, while a long period of resting enough to balance methane formers with acid fermers makes a conversion possile when temperature is raised at a high rate. Soured thermophilic digesters were recovered after seeding of mesophilic sludges, and sludge seeding could be a good method of start-up, conversion, or recovery of a thermophilic digester. Significant amount of thermophiles seemed to be present in the mesophilic digesters.

  • PDF

Kinetics of Anaerobic Digestion: A Comparative Study on Mesophilic and Thermophilic Anaerobic Digestion (혐기성소화(嫌氣性消化)의 동력학(動力學) : 중온(中溫) 및 고온혐기성소화(高溫嫌氣性消化)의 비교연구(比較研究))

  • Chang, Duk;Chung, Tai Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.1-11
    • /
    • 1987
  • Comprehensive laboratory experiments including digestion failures were conducted to identify differences between mesophilic and thermophilic digestion. Critical HRT was found to be near 10days for mesophilic and near 5days for thermophilic digestion. Inhibition occurred rapidly when operated below critical HRT. However, inhibition at mesophilic condition was much greater than that at thermophilic condition. Although digester performances were similar above critical HRT of mesophilic digestion, thermophilic digestion was considerably advantageous below this HRT. Thermophilic digestion produced smaller amount of sludges which had significantly higher settling velocity and lower specific resistance. Reaction rates also clearly demonstrated temperature and HRT effects on digestion. It was also found that gas production rates increased linearly with increasing reaction rates regardless of temperature and their relationships were almost identical at mesophilic and thermophilic temperature.

  • PDF

A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends

  • Van, Dinh Pham;Fujiwara, Takeshi;Tho, Bach Leu;Toan, Pham Phu Song;Minh, Giang Hoang
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • With benefits to the human health, environment, economy, and energy, anaerobic digestion (AD) systems have attracted remarkable attention within the scientific community. Anaerobic digestion system is created from (bio)reactors to perform a series of bi-metabolism steps including hydrolysis/acidogenesis, acetogenesis, and methanogenesis. By considering the physical separation of the digestion steps above, AD systems can be classified into single-stage (all digestion steps in one reactor) and multi-stage (digestion steps in various reactors). Operation of the AD systems does not only depend on the type of digestion system but also relies on the interaction among growth factors (temperature, pH, and nutrients), the type of reactor, and operating parameters (retention time, organic loading rate). However, these interactions were often reviewed inadequately for the single-stage digestion systems. Therefore, this paper aims to provide a comprehensive review of both single-stage and multi-stage systems as well as the influence of the growth factors, operating conditions, and the type of reactor on them. From those points, the advantages, disadvantages, and application range of each system are well understood.

Co-digestion of Thermophilic Acid-fermented Food Wastes and Sewage Sludge (음식물찌꺼기 고온산발효산물과 하수슬러지의 혼합처리)

  • Ahn, Chul-Woo;Jang, Seong-Ho;Park, Jin-Sik
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.897-905
    • /
    • 2006
  • This study has been conducted to investigate biodegradation characteristics and optimum mixing ratio for co-digestion with thermophilic acid-fermented food waste and sewage sludge using batch anaerobic digester. As the basis operating conditions for anaerobic digestion, the reaction temperature was controlled $35{\pm}1^{\circ}C$ and stirrer was set 70rpm. Thermophilic acid-fermented food waste and sewage sludge were mixed at the ratio of 10:0, 7:3, 5:5, 3:7, 0:10 and 5;5(food waste : sewage sludge) as the influent substrates. In results of co-digestion according to mixing ratio of thermophilic fermented food wastes and sewage sludge in batch mesophilic anaerobic digestion reactor, $385mL\;CH_4/g\;VS_{added}$ of methane production rate at 1:1 mixing ratio was more than that of any other mixing ratios. Compared with $293mL\;CH_4/g\;VS_{added}$ of methane production rate at 1:1 mixing ratio of food wastes and sewage sludge, pretreatment of food wastes by thermophilic acid fermentation was more effective in co-digestion with sewage sludge.

Pilot-scale Study on Nitrogen Removal of Effluent from Biogas Plant (바이오가스 플랜트 처리수의 고농도 질소 제거)

  • Yoo, Sungin;Yu, Youngseob;Lee, Yongsei;Park, Hyunsu;Yoo, Heechan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.175.1-175.1
    • /
    • 2011
  • A rotating activated bacillus contactor (RABC) process with a series of aerobic reactors was tested in pilot scale to treat digested liquid from an anaerobic digester treating swine wastewater and sewage sludge. The influent (digested liquid) for the RABC process showed C/N ratios less than 2 as a typical feature of effluent from anaerobic digesters. The pilot process, which consists of three 3 RABC reactors, four aerobic tanks and a sedimentation tank, was operated for 210 days with a hydraulic retention time of 20 days without pH and temperature control. Since the Bacillus-enriched aerobic reactors shows high efficiencies of nitrogen removal at low DO levels less than 1.0 mg/L, they were operated at reduced aeration intensities. With relatively low concentrations of organics in comparison with nitrogen concentrations, the RABC process tested in this study showed stable and high nitrogen and organics removal efficiencies over 80%. The nitrogen removal process tested in this study was proven to be an effective and operation-cost saving (lower aeration) method to remove nitrogen without adding external carbon sources to meet the optimum C/N ratio.

  • PDF

Analysis of Archaeal Communities in Full-Scale Anaerobic Digesters Using 454 Pyrosequencing (454 Pyrosequencing을 이용한 실규모 혐기성 소화조의 아케아 군집구조 분석)

  • Kang, Hyun-Jin;Kim, Taek-Seung;Lee, Young-Haeng;Lee, Taek-June;Han, Keum-Suk;Choi, Young-Jun;Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.209-217
    • /
    • 2011
  • Archaeal communities were investigated using 454 pyrosequencing technology based on 16S rRNA gene in 11 samples collected from six different full-scale anaerobic digesters. Observed operational taxonomic units (OTUs) estimated from the archaeal 16S rRNA gene sequences were 13-55 OTUs (3% cutoff) which was corresponded to 29-89% of Chao1 richness estimates. In the anaerobic digesters there were archaeal sequences within the orders Thermoproteales, Thermoplasmatales, Desulfurococcales as well as within the orders Methanomicrobiales, Methanobacteriales, Methanococcales, Methanosarcinales, and Methanocellales, which are known to produce methane. Among these orders, Methanococcales known to produce methane using hydrogen was the predominant taxon and constituted 51.8-99.7% of total sequences. All samples showed a very similar community structure (Pearson correlation coefficient=0.99) except for one sample based on a heat map analysis. In addition, canonical correspondence analysis correlating archaeal communities to the environmental variables demonstrated that digester temperature and total solids removal rate were the two important explanatory variables. Overall results suggested that environmental and operational variables of anaerobic digester are important factors determining archaeal diversity and community structure.

Effects of Biogas Composition Variations on Engine Performance (바이오가스의 성분 변화가 엔진 성능에 주는 영향)

  • Park, Seung-Hyun;Park, Cheol-Woong;Kim, Young-Min;Lee, Sun-Youp;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.25-30
    • /
    • 2011
  • Biogas obtained from the biodegradable organic wastes in an anaerobic digester consists of $CH_4$ and inert gases such as $CO_2$ and $N_2$. Since the composition of biogas varies by anaerobic digester conditions and the origin of wastes, it is necessary to respond to these variations so as to make stable combustion and accomplish high efficiency when it is used as a fuel for power generating SI engines. In this study, efforts have been made to investigate the effect of changes in the calorific values of biogas on the engine performance and exhaust characteristics. The biogas was simulated by supplying of $CH_4$ with $N_2$ dilution of various ratios, and ECM was developed to achieve accurate control of ignition and combustion. The results show that as the $CH_4$ concentration of the biogas decreases, the optimal spark timing is advanced due to the elevated thermal capacity and lowered $O_2$ concentration of the in-cylinder charge. Furthermore, since combustion temperature was reduced by increased inert gas, $NO_x$ emissions decreased, whereas THC emissions increased.

Enhancement of biogas production from swine slurry using the underground anaerobic digester (돈슬러리 지하혐기소화조의 바이오가스생산효율에 관한 연구)

  • Suresh, Arumuganainar;Choi, Hong Lim;Kim, Jae Hwan;Chung, In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.112-121
    • /
    • 2009
  • To obtain basic design criteria for underground anaerobic digestion and enhance biogas production from swine slurry, a $20m^3$ underground anaerobic digester (UGAD) was constructed and operated at mesophilic ($31{\sim}37^{\circ}C$) temperature with an organic loading rate (OLR) at $23.6kgVS/m^3/day$. The average biogas and $CH_4$ production rate were observed at 8.62 and $5.78m^3/day$, respectively. The mean percentile of $CH_4$ and $CO_2$ were also observed at 67.5% and 19.6%. The relative biogas yield was explored at $733L/kg\;VS_{added}$ and $CH_4$ yield was at $495L/kg\;VS_{added}$ respectively. The removal rate of biochemical constituents and pathogens were noticed considerably at 68%, 74%, 79%, 86%, 89%, 81%, 55%, 79%, 98% and 100% on TS, VS, TSS, $BOD_5$, $TCOD_{cr}$, $SCOD_{cr}$, $NH_3-N$, available P, fecal coliforms and Salmonella, respectively. This study suggested that, the modified UGAD system is a greatly desirable for anaerobic digestion for swine slurry with regards to high methane yield and biodegradability.

Ferric Chloride Addition Enhances Performance of Bioelectrochemical Anaerobic Digestion of Sewage Sludge at Ambient Temperature (제2철 이온을 이용한 상온조건에서 하수슬러지의 생물전기화학 혐기성소화 성능향상)

  • Feng, Qing;Song, Young-Chae;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.618-626
    • /
    • 2016
  • The influence of ferric ion ($Fe^{+3}$) on bioelectrochemical anaerobic digestion for sewage sludge was explored at ambient temperature ($25^{\circ}C$). Before the addition of ferric ion, the removal of volatile solids (VS) was 65.9% and the specific methane production rate was 370 mL/L/d. After the addition of ferric ion (200 ppm) to feed sludge, the bioelectrochemical anaerobic digester was more stable in the state variables including pH, alkalinity, COD and VFAs, and the VS removal and specific methane production rate were increased to 69.8% and 396 mL/L/d, respectively. However, the methane content in biogas was slightly reduced by the addition of ferric ion, indicating that the activity of planktonic anaerobic bacteria (PAB) was more improved after the addition of ferric ion. The dominances of syntrophic bacteria (Cloacamonas) and hyrolytic bacteria (Saprospiraceae, Ottowia pentelensis) in the PAB were increased by the addition of ferric ion. The addition of ferric ion improved the performance of bioelectrochemical anaerobic digestion for sewage sludge at ambient temperature.

Basic Study on the in-situ Biogenic Methane Generation from Low Grade Coal Bed (저품위 석탄의 원지반에서의 생물학적 메탄가스 생산에 관한 기초연구)

  • Wang, Fei;Jeon, Ji-Young;Lim, Hak-Sang;Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2015
  • In the present work, a basic study on the in-situ biogenic methane generation from low grade coal bed was conducted. Lignite from Indonesia was used as a sample feedstock. A series of BMP (Biochemical Methane Potential) tests were carried out under the different experimental conditions. Although nutrients and anaerobic digester sludge were added to the coal, the produced amount of methane was limited. Both temperature control and particle size reduction showed little effect on the increase of methane potential. When rice straw was added to lignite as an external carbon source, methane yield of 94.4~110.4 mL/g VS was obtained after 60 days of BMP test. The calorific value of lignite after BMP test decreased (4.5~12.1 %) as increasing the content of rice straw (12.5~50 wt % of lignite), implying that anaerobic digestion of rice straw led to partial degradation of lignite. Therefore, rice straw could be used as an external carbon source for the start-up of in-situ biogas generation from low grade coal bed.