Browse > Article
http://dx.doi.org/10.4491/eer.2018.334

A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends  

Van, Dinh Pham (Okayama University)
Fujiwara, Takeshi (Okayama University)
Tho, Bach Leu (National University of Civil Engineering)
Toan, Pham Phu Song (Okayama University)
Minh, Giang Hoang (National University of Civil Engineering)
Publication Information
Abstract
With benefits to the human health, environment, economy, and energy, anaerobic digestion (AD) systems have attracted remarkable attention within the scientific community. Anaerobic digestion system is created from (bio)reactors to perform a series of bi-metabolism steps including hydrolysis/acidogenesis, acetogenesis, and methanogenesis. By considering the physical separation of the digestion steps above, AD systems can be classified into single-stage (all digestion steps in one reactor) and multi-stage (digestion steps in various reactors). Operation of the AD systems does not only depend on the type of digestion system but also relies on the interaction among growth factors (temperature, pH, and nutrients), the type of reactor, and operating parameters (retention time, organic loading rate). However, these interactions were often reviewed inadequately for the single-stage digestion systems. Therefore, this paper aims to provide a comprehensive review of both single-stage and multi-stage systems as well as the influence of the growth factors, operating conditions, and the type of reactor on them. From those points, the advantages, disadvantages, and application range of each system are well understood.
Keywords
Anaerobic digester; Anaerobic digestion systems; Single-stage; Solid waste treatment; Three-stage; Two-stage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arsova L. Anaerobic digestion of food waste: Current status, problems and an alternative product [dissertation]. New York: Columbia Univ.; 2010.
2 IEA Bioenergy. Energy from biogas task 37 plant list 2015 [Internet]. Available from: http://task37.ieabioenergy.com/plant-list.html.
3 Ergas SJ, Yeh DH, Hinds GR, Wang M, Dick G. Bioenergy production from MSW by solid-state anaerobic digestion [dissertation]. Florida: Univ. of South Florida; 2017.
4 Jiang X, Sommer SG, Christensen KV. A review of the biogas industry in China. Energy Policy 2011;39:6073-6081.   DOI
5 Surendra K, Takara D, Hashimoto AG, Khanal SK. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renew. Sust. Energ. Rev. 2014;31:846-859.   DOI
6 De Baere L, Mattheeuws B. Anaerobic digestion of the organic fraction of municipal solid waste in Europe-Status, experience and prospects. In: Waste management: Recycling and recovery. January 2012. p. 517-526.
7 Deublein D, Steinhauser A. Biogas from waste and renewable resources: An introduction. Germany: Wiley-Interscience; 2011.
8 Burton FL, Stensel HD, Tchobanoglous G. Wastewater engineering: Treatment and resource recovery. 5th ed. New York: McGraw-Hill; 2014.
9 van Lier JB, Mahmoud N, Zeeman G. Anaerobic wastewater treatment. In: Henze M, van Loosdrecht M, Ekama G, Brdjanovic D, eds. Biological wastewater treatment: Principles, modelling and design. London, UK: IWA Publishing; 2008. p. 415-456.
10 Yu L, Ma J, Frear C, Zaher U, Chen S. Two-stage anaerobic digestion systems wherein one of the stages comprises a two-phase system. Google patents. 2013.
11 Nayono SE. Anaerobic digestion of organic solid waste for energy production [dissertation]. Germany: Karlsruhe Institute of Technology; 2010.
12 Gallert C, Winter J. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: Effect of ammonia on glucose degradation and methane production. Appl. Microbiol. Biotechnol. 1997;48:405-410.   DOI
13 Duan N, Dong B, Wu B, Dai X. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: Feasibility study. Bioresour. Technol. 2012;104:150-156.   DOI
14 Nakakubo R, Moller HB, Nielsen AM, Matsuda J. Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environ. Eng. Sci. 2008;25:1487-1496.   DOI
15 Yenigün O, Demirel B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013;48:901-911.   DOI
16 Lissens G, Vandevivere P, De Baere L, Biey E, Verstraete W. Solid waste digestors: Process performance and practice for municipal solid waste digestion. Water Sci. Technol. 2001;44:91-102.
17 Uemura S. Mineral requirements for mesophilic and thermophilic anaerobic digestion of organic solid waste. Int. J. Environ. Res. 2010;4:33-40.
18 El-Mashad HM, Zeeman G, van Loon WKP, Bot GPA, Lettinga G. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour. Technol. 2004;95:191-201.   DOI
19 Kim JK, Oh BR, Chun YN, Kim SW. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J. Biosci. Bioeng. 2006;102:328-332.   DOI
20 Angelonidi E, Smith SR. A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste. Water Environ. J. 2015;29:549-557.   DOI
21 Vandevivere P, De Baere L, Verstraete W. Types of anaerobic digester for solid wastes. In: Mata-Alvarez J, ed. Biomethanization of the organic fraction of municipal solid wastes. London: IWA Publishing; 2003. p. 111-140.
22 Pandey A. Solid-state fermentation. Biochem. Eng. J. 2003;13:81-84.   DOI
23 Behrens M, Peuckert J, Meeusen M. Review on standards for biogasification. Opening bio-based markets via standards, labelling and procurement 2014, IEEE: Gent, Belgium.
24 Tchobanoglous G, Burton FL, Stensel HD, Metcalf & Eddy. Wastewater engineering: Treatment and reuse. New York: McGraw-Hill Education; 2003.
25 D'Addario E, Pappa R, Pietrangeli B, Valdiserri M. The acidogenic digestion of the organic fraction of municipal solid waste for the production of liquid fuels. Water Sci. Technol. 1993;27:183-192.
26 Yen HW, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 2007;98:130-134.   DOI
27 Turovskiy IS, Mathai P. Wastewater sludge processing. New Jersey: Wiley-Interscience; 2006.
28 Roos K, Martin J, Moser M. AgSTAR handbook: A manual for developing biogas systems at commercial farms in the United States. US EPA; 2004.
29 Schievano A, Tenca A, Scaglia B, et al. Two-stage vs. single-stage thermophilic anaerobic digestion: Comparison of energy production and biodegradation efficiencies. Environ. Sci. Technol. 2012;46:8502-8510.   DOI
30 Dong L, Zhenhong Y, Yongming S. Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresour. Technol. 2010;101:2722-2728.   DOI
31 Haider MR, Zeshan, Yousaf S, Malik RN, Visvanathan C. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresour. Technol. 2015;190:451-457.   DOI
32 Wu LJ, Kobayashi T, Li YY, Xu KQ. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste. Energy Convers. Manage. 2015;106:1174-1182.   DOI
33 Zhang C, Su H, Tan T. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system. Bioresour. Technol. 2013;145:10-16.   DOI
34 Nagao N, Tajima N, Kawai M, et al. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. Technol. 2012;118:210-218.   DOI
35 Salsali H, Parker W, Sattar S. Influence of staged operation of mesophilic anaerobic digestion on microbial reduction. Proc. Water Environ. Fed. 2005;51-60:4571-4586.   DOI
36 Kim DH, Oh SE. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions. Waste Manage. 2011;31:1943-1948.   DOI
37 Zhang L, Lee YW, Jahng D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresour. Technol. 2011;102:5048-5059.   DOI
38 Heo NH, Park SC, Kang H. Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge. J. Environ. Sci. Health Part A. 2004;39:1739-1756.   DOI
39 Song YC, Kwon SJ, Woo JH. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge. Water Res. 2004;38:1653-1662.   DOI
40 Pham Van D, Hoang MG, Pham Phu ST, Fujiwara T. Kinetics of carbon dioxide, methane and hydrolysis in co-digestion of food and vegetable wastes. Global J. Environ. Sci. Manage. 2018;4:401-412.
41 Halalsheh M, Sawajneh Z, Zu'bi M, et al. Treatment of strong domestic sewage in a 96 m3 UASB reactor operated at ambient temperatures: Two-stage versus single-stage reactor. Bioresour. Technol. 2005;96:577-585.   DOI
42 Nasr N, Elbeshbishy E, Hafez H, Nakhla G, El Naggar MH. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresour. Technol. 2012;111:122-126.   DOI
43 Agyeman FO, Tao W. Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate. J. Environ. Manage. 2014;133:268-274.   DOI
44 Nielsen H, Mladenovska Z, Westermann P, Ahring BK. Comparison of two-stage thermophilic ($68^{\circ}C/55^{\circ}C$) anaerobic digestion with one-stage thermophilic ($55^{\circ}C$) digestion of cattle manure. Biotechnol. Bioeng. 2004;86:291-300.   DOI
45 Pham Van D, Hoang MG, Pham Phu ST, Fujiwara T. A new kinetic model for biogas production from co-digestion by batch mode. Global J. Environ. Sci. Manage. 2018;4:251-262.
46 Massanet-Nicolau J, Dinsdale R, Guwy A, Shipley G. Utilising biohydrogen to increase methane production, energy yields and process efficiency via two stage anaerobic digestion of grass. Bioresour. Technol. 2015;189:379-383.   DOI
47 Dinh PV, Fujiwara T, Pham Phu ST, Giang HM. Kinetic of biogas production in co-digestion of vegetable waste, horse dung, and sludge by batch reactors. In: 4th International Conference on Environment and Renewable Energy (ICERE); June 2014; Da Nang.
48 Trzcinski AP, David CS. Microbial biomethane from solid wastes: Principles and biotechnogical processes. In: Harzevili FD, Hiligsmann S, eds. Microbial fuels. USA: CRC Press; 2017. p. 77-151.
49 Hoornweg D, Bhada-Tata P. What a waste: A global review of solid waste management. In: Urban development series knowledge papers, vol.15; Washington D.C.: World bank; 2012.
50 Al Seadi T, Owen N, Hellström H, Kang H. Source separation of MSW. In: IEA Bioenergy. The International Energy Agency; 2013.
51 Zhang W, Zhang L, Li A. Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: Process performance and synergistic effects. Chem. Eng. J. 2015;259:795-805.   DOI
52 Rapport J, Zhang R, Jenkins BM, Williams RB. Current anaerobic digestion technologies used for treatment of municipal organic solid waste. In: California Environmental Protection Agency. California: California Integrated Waste Management Board; 2008.
53 Kothari R, Pandey A, Kumar S, Tyagi V, Tyagi S. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew. Sust. Energ. Rev. 2014;39:174-195.   DOI
54 Kayhanian M, Tchobanoglous G, Brown RC. Biomass conversion processes for energy recovery. In: Kreith F, Goswami DY, eds. Handbook of energy efficiency and renewable energy. Florida: CRC Press; 2007. p. 22.1-22.67.
55 Moestedt J, Nordell E, Hallin S, Schnurer A. Two-stage anaerobic digestion for reduced hydrogen sulphide production. J. Chem. Technol. Biotechnol. 2016;91:1055-1062.   DOI
56 Aslanzadeh S, Rajendran K, Jeihanipour A, Taherzadeh MJ. The effect of effluent recirculation in a semi-continuous two-stage anaerobic digestion system. Energies 2013;6:2966-2981.   DOI
57 Kim DH, Cha J, Lee MK, Kim HW, Kim MS. Prediction of bio-methane potential and two-stage anaerobic digestion of starfish. Bioresour. Technol. 2013;141:184-190.   DOI
58 Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer AS. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl. Biochem. Biotechnol. 2007;143:27-40.   DOI
59 Han D, Tong X, Currell MJ, Cao G, Jin M, Tong C. Evaluation of the impact of an uncontrolled landfill on surrounding groundwater quality, Zhoukou, China. J. Geochem. Explor. 2014;136: 24-39.   DOI
60 Kristensen JB, Felby C, Jorgensen H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol. Biofuels 2009;2:1-10.   DOI
61 Yu HQ, Fang HHP. Acidogenesis of dairy wastewater at various pH levels. Water Sci. Technol. 2002;45:201-206.
62 Chu CF, Li YY, Xu KQ, Ebie Y, Inamori Y, Kong HN. A pHand temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrogen Energ. 2008;33:4739-4746.   DOI
63 Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 2013;143:525-530.   DOI
64 Lindner J, Zielonka S, Oechsner H, Lemmer A. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates. Environ. Technol. 2015;36:198-207.   DOI
65 He M, Sun Y, Zou D, et al. Influence of temperature on hydrolysis acidification of food waste. Procedia Environ. Sci. 2012;16:85-94.   DOI
66 Chiu S, Lo I. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environ. Sci. Pollut. Res. 2016;23:24435-24450.   DOI
67 Chen HH, Lee AH. Comprehensive overview of renewable energy development in Taiwan. Renew. Sust. Energ. Rev. 2014;37:215-228.   DOI
68 Deng Y, Xu J, Liu Y, Mancl K. Biogas as a sustainable energy source in China: Regional development strategy application and decision making. Renew. Sust. Energ. Rev. 2014;35:294-303.   DOI
69 Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renew. Sust. Energ. Rev. 2015;45:540-555.   DOI
70 Zhang C, Su H, Baeyens J, Tan T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sust. Energ. Rev. 2014;38:383-392.   DOI
71 Chernicharo L, Augusto C. Anaerobic reactors. In: Biological Wastewater Treatment Series, London: IWA publishing; 2007.
72 Gerardi MH. The microbiology of anaerobic digesters. In: Wastewater Microbiology Series. New Jersey: Wiley-Interscience; 2003.
73 Demirel B, Yenigun O. Two-phase anaerobic digestion processes: A review. J. Chem. Technol. Biotechnol. 2002;77:743-755.   DOI
74 Appels L, Baeyens J, Degreve J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energ. Combust. Sci. 2008;34:755-781.   DOI
75 Ostrem K. Greening waste: Anaerobic digestion for treating the organic fraction of municipal solid wastes [dissertation]. New York: Columbia Univ.; 2004.
76 Pavan P, Battistoni P, Cecchi F, Mata-Alvarez J. Two-phase anaerobic digestion of source sorted OFMSW (organic fraction of municipal solid waste): Performance and kinetic study. Water Sci. Technol. 2000;41:111-118.
77 Mata-Alvarez J. Biomethanization of the organic fraction of municipal solid wastes. Fundamentals of the anaerobic digestion process. London, UK: IWA publishing; 2003.
78 Kim M, Gomec CY, Ahn Y, Speece R. Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environ. Technol. 2003;24:1183-1190.   DOI
79 Kozuchowska J, Evison LM. VFA production in pre-acidification systems without pH control. Environ. Technol. 1995;16:667-675.   DOI
80 Komemoto K, Lim YG, Nagao N, Onoue Y, Niwa C, Toda T. Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Manage. 2009;29:2950-2955.   DOI
81 Paudel S, Kang Y, Yoo YS, Seo GT. Effect of volumetric organic loading rate (OLR) on $H_2\;and\;CH_4$ production by two-stage anaerobic co-digestion of food waste and brown water. Waste Manage. 2017;61:484-493.   DOI
82 Dareioti MA, Kornaros M. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresour. Technol. 2014;167:407-415.   DOI
83 Veeken A, Kalyuzhnyi S, Scharff H, Hamelers B. Effect of pH and VFA on hydrolysis of organic solid waste. J. Environ. Eng. 2000;126:1076-1081.   DOI
84 Veeken AHM, Hamelers BVM. Effect of substrate-seed mixing and leachate recirculation on solid state digestion of biowaste. Water Sci. Technol. 2000;41:255-262.   DOI
85 Koster IW, Lettinga G. Anaerobic digestion at extreme ammonia concentrations. Biol. Wastes 1988;25:51-59.   DOI
86 Stewart WC. Three stage, multiple phase anaerobic digestion system and method [Internet]. Google Patents; c2014. Available from: https://patents.google.com/patent/US5500123.
87 Zieminski K, Frac M. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. Afr. J. Biotechnol. 2012;11:4127-4139.
88 Demirel B, Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 2008;7:173-190.   DOI
89 Abbasi T, Tauseef S, Abbasi SA. Biogas energy. In: Springer Briefs in Environmental Science. New York: Springer Science and Business Media; 2011.
90 Zhang P, Chen Y, Zhou Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Res. 2009;43:3735-3742.   DOI
91 Sanders WTM. Anaerobic hydrolysis during digestion of complex substrates [dissertation]. Netherlands: Wageningen Univ.; 2001.
92 Zhang B, Zhang L, Zhang S, Shi H, Cai W. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ. Technol. 2005;26:329-340.   DOI
93 Krishna D, Kalamdhad AS. Pre-treatment and anaerobic digestion of food waste for high rate methane production - A review. J. Environ. Chem. Eng. 2014;2:1821-1830.   DOI
94 Cavinato C, Bolzonella D, Fatone F, Cecchi F, Pavan P. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour. Technol. 2011;102:8605-8611.   DOI
95 Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PN. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energ. 2014;123:143-156.   DOI
96 Buyukkamaci N, Filibeli A. Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochem. 2004;39:1491-1494.   DOI
97 Zhang J, Sun K, Wu M, Zhang L. Influence of temperature on performance of anaerobic digestion of municipal solid waste. J. Environ. Sci. 2006;18:810-815.   DOI
98 Li W, Guo J, Cheng H, Wang W, Dong R. Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation. Appl. Energy 2017;189:613-622.   DOI
99 Rincon B, Borja R, Gonzalez JM, Portillo MC, Saiz-Jimenez C. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem. Energ. J. 2008;40:253-261.   DOI
100 Park C, Lee C, Kim S, Chen Y, Chase HA. Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. J. Biosci. Bioeng. 2005;100:164-167.   DOI
101 Kim SW, Park JY, Kim JK, et al. Development of a modified three-stage methane production process using food wastes. Appl. Biochem. Biotechnol. 2000;84:731-741.   DOI
102 Kim JK, Han GH, Oh BR, Chun YN, Eom CY, Kim SW. Volumetric scale-up of a three stage fermentation system for food waste treatment. Bioresour. Technol. 2008;99:4394-4399.   DOI
103 Zhang J, Loh K-C, Li W, Lim JW, Dai Y, Tong YW. Three-stage anaerobic digester for food waste. Appl. Energ. 2016;194:287-295.   DOI
104 Pile A. Biosolids technology fact sheet: Multi-stage anaerobic digestion. EPA USA; 2006. p. 2010.
105 Horiuchi J, Shimizu T, Kanno T, Kobayashi M. Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemostat culture. Biotechnol. Tech. 1999;13:155-157.   DOI
106 Cysneiros D, Banks CJ, Heaven S, Karatzas KAG. The effect of pH control and 'hydraulic flush' on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresour. Technol. 2012;123:263-271.   DOI
107 Pham TN, Nam WJ, Jeon YJ, Yoon HH. Volatile fatty acids production from marine macroalgae by anaerobic fermentation. Bioresour. Technol. 2012;124:500-503.   DOI
108 Ramos-Suarez J, Arroyo NC, Gonzalez-Fernandez C. The role of anaerobic digestion in algal biorefineries: Clean energy production, organic waste treatment, and nutrient loop closure. In: Singh B, Kuldeep B, Faizal B, eds. Algae and environmental sustainability. India: Springer; 2015. p. 53-76.
109 Fang HH, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 2002;82:87-93.   DOI
110 Stronach SM, Rudd T, Lester JN. Anaerobic digestion processes in industrial wastewater treatment. In: Aiba S, Fan LT, Fiechter A, de Klein J, Schügerl K, eds. Biotechnology monographs. Berlin, Germany: Springer Science and Business Media; 2012.
111 Zhang J, Loh KC, Lee J, Wang CH, Dai Y, Tong YW. Three-stage anaerobic co-digestion of food waste and horse manure. Sci. Rep. 2017;7:1269.   DOI