• Title/Summary/Keyword: Diffusion time

Search Result 2,139, Processing Time 0.076 seconds

Examination of Diffusion Process for High-speed Avalanche Photodiode Fabrication

  • Ilgu Yun;Hyun, Kyujg-Sook;Kwon, Yong-Hwan;Pyun, Kwang-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.954-958
    • /
    • 2000
  • The characterization of zinc diffusion processes applied for high-speed avalanche photodiodes has been examined. The different diffusion process conditions for InP test structures were explored. The zinc diffusion profiles, such as the diffusion depth and the zinc dopant concentration, were examined using secondary ion mass spectrometry with varying the process variables and material parameters. It is observed that the diffusion profiles are severly impacted on the process parameters, such as the amount of Zn$_3$P$_2$ source and the diffusion time, as well as material parameters, such as doping concentration of diffusion layer. These results can be utilized for the high-speed avalanche photodiode fabrication.

  • PDF

Study of Zinc Diffusion Process for High-speed Avalanche Photodiode Fabrication

  • Ilgu Yun;Hyun, Kyung-Sook;Pyun, Kwang-Eui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.731-734
    • /
    • 2000
  • The characterization of Zinc diffusion processes applied fur high-speed avalanche photodiodes has been examined. The different diffusion process conditions for InP test structures were explored. The Zinc diffusion profiles, such as the diffusion depth and the Zinc dopant concentration, were examined using secondary ion mass spectrometry with varying the process variables and material parameters. It is observed that the diffusion profiles are severely impacted on the process parameters, such as the amount of Zn$_3$P$_2$source and the diffusion time, as well as material parameters, such as doping concentration of diffusion layer. These results can be utilized for the high-speed avalanche photodiode fabrication.

  • PDF

An innovative method for determining the diffusion coefficient of product nuclide

  • Chen, Chih-Lung;Wang, Tsing-Hai
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1019-1030
    • /
    • 2017
  • Diffusion is a crucial mechanism that regulates the migration of radioactive nuclides. In this study, an innovative numerical method was developed to simultaneously calculate the diffusion coefficient of both parent and, afterward, series daughter nuclides in a sequentially reactive through-diffusion model. Two constructed scenarios, a serial reaction (RN_1 ${\rightarrow}$ RN_2 ${\rightarrow}$ RN_3) and a parallel reaction (RN_1 ${\rightarrow}$ RN_2A + RN_2B), were proposed and calculated for verification. First, the accuracy of the proposed three-member reaction equations was validated using several default numerical experiments. Second, by applying the validated numerical experimental concentration variation data, the as-determined diffusion coefficient of the product nuclide was observed to be identical to the default data. The results demonstrate the validity of the proposed method. The significance of the proposed numerical method will be particularly powerful in determining the diffusion coefficients of systems with extremely thin specimens, long periods of diffusion time, and parent nuclides with fast decay constants.

A GENERAL SOLUTION OF A SPACE-TIME FRACTIONAL ANOMALOUS DIFFUSION PROBLEM USING THE SERIES OF BILATERAL EIGEN-FUNCTIONS

  • Kumar, Hemant;Pathan, Mahmood Ahmad;Srivastava, Harish
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.173-185
    • /
    • 2014
  • In the present paper, we consider an anomalous diffusion problem in two dimensional space involving Caputo time and Riesz-Feller fractional derivatives and then solve it by using a series involving bilateral eigen-functions. Also, we obtain a numerical approximation formula of this problem and discuss some of its particular cases.

GLOBAL ASYMPTOTIC STABILITY FOR A DIFFUSION LOTKA-VOLTERRA COMPETITION SYSTEM WITH TIME DELAYS

  • Zhang, Jia-Fang;Zhang, Ping-An
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1255-1262
    • /
    • 2012
  • A type of delayed Lotka-Volterra competition reaction-diffusion system is considered. By constructing a new Lyapunov function, we prove that the unique positive steady-state solution is globally asymptotically stable when interspecies competition is weaker than intraspecies competition. Moreover, we show that the stability property does not depend on the diffusion coefficients and time delays.

ASYMPTOTIC RUIN PROBABILITIES IN A GENERALIZED JUMP-DIFFUSION RISK MODEL WITH CONSTANT FORCE OF INTEREST

  • Gao, Qingwu;Bao, Di
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.735-749
    • /
    • 2014
  • This paper studies the asymptotic behavior of the finite-time ruin probability in a jump-diffusion risk model with constant force of interest, upper tail asymptotically independent claims and a general counting arrival process. Particularly, if the claim inter-arrival times follow a certain dependence structure, the obtained result also covers the case of the infinite-time ruin probability.

Moleciular Reorientation in the Presence of the Extended Diffusion of internal Rotation in Liquid Perdeuterotoluene

  • Doo-Soo Chung;Myung-Soo Kim;Jo-Woong Lee;Kook-Joe Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.25-28
    • /
    • 1983
  • The effect of internal rotation of methyl group in liquid perdeuterotoluene on nuclear quadrupole relaxation of methyl deuterons is investigated. A model of a spherical diffusor undergoing rotational diffusion is extended to include the extended diffusion of internal rotation. The overall reorientational correlation time in the presence of internal rotation is explicitly given as an analytical function of the angular momentum correlation time. Also, the degree of inertial effect in the internal rotation is evaluated.

Molecular Reorientation of Oblate Symmetric Top Molecules with Internal Extended Rotational Diffusion

  • Shin, Kook-Joe Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.5
    • /
    • pp.228-230
    • /
    • 1983
  • Molecular reorientation of oblate symmetric top molecules with internal rotation is investigated theoretically and an analytic expression for the overall reorientational correlation time in terms of the internal angular momentum correlation time is derived. This expression is quite different from the expression for prolate symmetric top molecules but reduces to the same expression in the spherical top limit. Fast internal rotation is treated by a modified version of the extended rotational diffusion while the bulky symmetric top mainbody is treated by the rotational diffusion model.

Dynamics and Transport of Molecules Studied by Transient Grating Method : Methyl Red in Solution

  • 김선희;김성규
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.365-373
    • /
    • 1996
  • Time profile of the transient grating signal induced by a nanosecond pulsed laser excitation of methyl red is investigated in alcohols and toluene at several solvent temperatures. The signal decays biexponentially with well-separated time constants; the faster decay is identified as due to thermal diffusion of the solvents and the slower one as mainly due to translational diffusion of the solute. The measured translational diffusion constants of methyl red in toluene are close to a hydrodynamic prediction with a slip boundary condition while those in alcohols are larger by 30% and increase slightly with the size of alcohols. We compare the results with modified hydrodynamic models.

Analysis Technique for Chloride Penetration using Double-layer and Time-Dependent Chloride Diffusion in Concrete (콘크리트내의 이중구조와 시간의존성을 고려한 염화물 해석기법의 개발)

  • Mun, Jin-Man;Kim, Jin-Yeong;Kim, Young-Joon;Oh, Gyeong-Seok;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.83-91
    • /
    • 2015
  • With varying conditions of concrete surface, induced chloride contents are changed and this is a key parameter for steel corrosion and service life in RC (Reinforced Concrete) structures. Many surface enhancement techniques using impregnation have been developed, however the evaluation techniques for chloride behavior through doubly layered media and time-dependent diffusion are rarely proposed. This paper presents an analysis technique considering double-layer concrete and time-dependent diffusion behavior, and the results are compared with those from the previous test results through reverse analysis. The chloride profiles from the surface-impregnated concrete exposed to atmospheric, tidal, submerged zone for 2 years are adopted. Furthermore surface chloride contents and diffusion coefficients are obtained, and are compared with those from Life365. Through consideration of time effect, the relative error decreases from 0.28 to 0.20 in atmospheric, 0.29 to 0.11 in tidal, and 0.54 to 0.40 in submerged zone, respectively, which shows more reasonable results. Utilizing the diffusion coefficients from Life365, relative errors increases and it needs deeper penetration depth (e) and lower diffusion coefficient ratio ($D_1/D_2$) due to higher diffusion coefficient.