• Title/Summary/Keyword: Diffusion coating

Search Result 287, Processing Time 0.025 seconds

Preparation of AI-21Ti-23Cr High Temperature Protective Coating for TiAo Intermatallic Compounds by RF Magnetron Sputtering (RF Magnetron Sputtering에 의한 금속간화합물 TiAI 모재위의 AI-21Ti-23Cr 고온내산화코팅)

  • Park, Sang-Uk;Park, Jeong-Yong;Lee, Ho-Nyeon;O, Myeong-Hun;Wi, Dang-Mun
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.742-751
    • /
    • 1996
  • Ti-48Al(at.%) specimens were coated with Al-21Ti-23Cr(at.%) film by RF magnetron sputtering. Ti-48Al specimen coated at 200, 0.8Pa and 573K showed the best oxidation resistance property in the isothermal oxidation test. Al-21Ti-23Cr film was amophous after depostion, but crystallized and fromed a protective ${Al}_{2}{O}_{3}$ layer on the surface during oxidation. Ti-48Al specimens coated at 573K have been sassessed by isothermal oxidation test for 100 hours at 1073K, 1173K and 1273K. The mass gain curves showed that parabolic stage continued at al tested temperature range in isothermal oxidation test, and the excellent oxidation resistance is attriutable to the formation of a protective ${Al}_{2}{O}_{3}$ layer on the surface of Al-21Ti-23Cr film. After oxidation test at 1273K, the matrix of Al-21Ti-23Cr film had transformed into TiAlCr phase due to the depletion of Al during oxidation and the diffusion of Ti from the substrate, and the extent of mass gain of the specimen increased compared with that of specimens tested at lower temperature.

  • PDF

Electrosorption Behavior of $TiO_2$/Activated Carbon Composite for Capacitive Deionization (축전식 이온제거에 대한 $TiO_2$/Activated Carbon 화합물의 전기흡착 거동)

  • Lee, Jeong-Won;Kim, Hong-Il;Kim, Han-Joo;Park, Soo-Gil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.265-271
    • /
    • 2010
  • Desalination effects of capacitive deionization (CDI) process was studied using $TiO_2$/activated carbon electrode. In order to enhance the wettability of electrode and decrease a electrode resistance, $TiO_2$ was coated on activated carbon. By means of $TiO_2$ coating on activated carbon, electric double layer to adsorption content in CDI process was increased. It was identified from TEM, XRD, and XPS that the activated carbon based on $TiO_2$ composite was fabricated successfully by means of sol-gel method. As a results of cyclic voltammetry and impedance, it was identified that $TiO_2$/activated carbon electrode has more electric double later capacitance and less diffusion resistance than activated carbon. Also charge-discharge and ion conductivity profiles showed that the ion removal ratios of $TiO_2$/activated carbon electrode in NaCl electrolyte of $1000\;{\mu}S/cm$ more increased about 39% than that of activated carbon. In conclusion it was possible to identify that the carbon electrode coated $TiO_2$ as electrode material was more effective than raw carbon electrode.

Hydrophobic Polydimethylsiloxane Thin Films Prepared by Chemical Vapor Deposition: Application in Water Purification (화학적 증기 증착 방법을 통해 제조한 소수성 폴리디메틸실록산 박막: 수처리로의 응용)

  • Han, Sang Wook;Kim, Kwang-Dae;Kim, Ju Hwan;Uhm, Sunghyun;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Polydimethylsiloxane (PDMS) can be deposited on various substrates using chemical vapor deposition process, which results in the formation of PDMS thin films with thickness below 5 nm. PDMS layers can be evenly deposited on surfaces of nanoparticles composed of various chemical compositions such as $SiO_2$, $TiO_2$, ZnO, C, Ni, and NiO, and the PDMS-coated surface becomes completely hydrophobic. These hydrophobic layers are highly resistant towards degradation under acidic and basic environments and UV-exposures. Nanoparticles coated with PDMS can be used in various environmental applications: hydrophobic silica nanoparticles can selectively interact with oil from oil/water mixture, suppressing fast diffusion of spill-oil on water and allowing more facile physical separation of spill-oil from the water. Upon heat-treatments of PDMS-coated $TiO_2$ under vacuum conditions, $TiO_2$ surface becomes completely hydrophilic, accompanying formation oxygen vacancies responsible for visible-light absorption. The post-annealed $PDMS-TiO_2$ shows enhanced photocatalytic activity with respect to the bare $TiO_2$ for decomposition of organic dyes in water under visible light illumination. We show that the simple PDMS-coating process presented here can be useful in a variety of field of environmental science and technology.

Electrochemical Properties of Pyrrole/Thiophene Polymer Composite (피롤/티오펜 고분자 복합체의 전기화학적 성질)

  • Cha, Seong Keuck;Choi, Kyu Seong;Ahn, Byuong Kee;Kang, Sang Jin
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.7
    • /
    • pp.467-473
    • /
    • 1996
  • Although a polypyrrole shows better electrical conductivity, 100∼400 ${\Omega}^{-1}cm^{-1}$, than other organic conducting polymers, its electrical conductivity will be worsen in the presence of the oxygen due to its easy oxidation. On the other hand, polythiophene shows better stability in the air while its electrcal conductivity is poor compared to the polypyrrole. We succeed to develope the mixed polymer electrode that is stable in the air and shows a good redox characteristics. The mixed polymer electrode has been prepared by the electrical polymerization of polypyrrole on the Pt electrode as 1.70 C$cm^{-2}$ and then coating with polythiophene as 0.34 C$cm^{-2}$. The polymerization rate of polythiophene was $3.89{\times}10^{-8}$ at the bare Pt electrode and $6.07{\times}10^{-8}cms^{-1}$ at the mixed polymer electrode. And the standard rate constants of each electrode were $5.16{\times}10^{-6}\;and\;3.94{\times}10^{-4} cms^{-1}$ respectively. Also, the electrocatalytic rate of the polypyrrole polymer electrode was $3.45{\times}10^{-3}cm^3mol^{-1}s^{-1}.$ We found the immobilized layer at the modified electrode acted as an electrocatalyst. Finally, this polymerization process at the Pt electrode was the electron transfer controlled, but that the mixed polymer electrode was the diffusion and charge transfer controlled.

  • PDF

Enhanced Flame Retardancy of Cotton Fabric by Functionalized Graphene Oxide and Ammonium Polyphosphate (기능성화 산화 그래핀과 폴리인산암모늄을 이용한 직물 난연성 향상)

  • Ka, Dongwon;Jang, Seongon;Jung, Hyunsook;Jin, Youngho
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.177-184
    • /
    • 2020
  • Flame retardant(FR) clothes prohibit additional fire diffusion and make the personnel do their tasks without a hitch in a flammable environment. The existing FR clothes, however, are heavy and give high thermal fatigue. Therefore, it is strongly demanded to develop a light, convenient, and eco-friendly clothes. Recently, many works have been reported to make FR fabrics with phosphorus compounds, but their performance could not satisfy the specified criteria in appraisal standards of domestic and American FR clothes or combat uniforms. In this paper, two kinds of phosphorus compounds were applied to cotton fabric. Graphene oxide functionalized with a phosphorus-rich deep eutectic solvent and ammonium polyphosphate were coated on cotton fabric by eco-friendly padding procedure. The coated fabrics were analyzed with thermogravimetric analysis, vertical flame resistance test(ASTM D6413), cone calorimeter test(ISO 5660-1), and method of test for limited flame spread(ISO 15025). It was revealed that the as-made cotton with those two materials simultaneously had better flame resistance than the cottons with each one. Furthermore, an additional coating for hydrophobicity on the FR cotton was tried for better washing fastness.

A Study on the Comparison of Brazed Joint of Zircaloy-4 with PVD-Be and Zr-Be Amorphous alloys as Filler Metals (PVD-Be와 비정질 Zr-Be 합금을 용가재로 사용한 Zircaloy-4의 브레이징 접합부의 비교 연구)

  • Hwang, Yong-Hwa;Kim, Jae-Yong;Lee, Hyung-Kwon;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • Brazing is an important manufacturing process in the fabrication of Heavy Water Reactor fuel rods, in which bearing and spacer pads are joined to Zircaloy-4 cladding tubes. The physical vapor deposition(PVD) technique is currently used to deposit metallic Be on the surfaces of pads as a filler metal. Amorphous Zr-Be binary alloys which are manufactured by rapid solidification process are under developing to substitute the conventional PVD-Be coating. In the present study, brazed joint with PVD and amorphous alloys of $Zr_{1-x}Be_{x}(0.3{\le}x{\le}0.5)$ as filler metals are compared by mechanism, microstructure and hardness. The thickness of brazed joint with amorphous alloys became much smaller than that of PVD-Be. The erosion of base metal did not occur in the brazed joint with amorphous alloys. The brazing mechanism for PVD-Be seems to be Be diffusion into Zr-4 with capillary action resulting from eutectic reaction while that for amorphous alloys are associated with the liquid phase formation in the brazed joint. The brazed joint microstructure with PVD-Be consists of dendrite while that with amorphous alloys is globular. The $Zr_{0.7}Be_{0.3}$ alloy shows the smooth interface with little erosion in the base metal and is recommended a most suitable brazing filler metal for Zircaloy-4.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF