• Title/Summary/Keyword: Diffusion Flux

Search Result 340, Processing Time 0.03 seconds

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지에서 고분자 막의 이온 전도도)

  • Hwang, Byungchan;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.593-597
    • /
    • 2016
  • The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.

Radiative Effect on the Conjugated Forced Convection-Conduction Heat Transfer in a Plate Fin (평판 핀에서의 강제대류 열전달에 미치는 복사효과)

  • 손병진;민묘식;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.453-462
    • /
    • 1990
  • The interaction of forced convection-conduction with thermal radiation in laminar boundary layer over a plate fin is studied numerically. The analysis is based on complete solution whereby the heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum and energy in the fluid boundary layer adjacent to the fin. The fluid is a gray medium and diffusion(Rosseland) approximation is used to describe the radiative heat flux in the energy equation. The resulting boundary value problem are convection-conduction parameter N$_{c}$ and radiation-conduction parameter m, Prandtl number Pr. Numerical results are presented for gases with the Prandtl numbers of 0.7 & 5 with values of N$_{c}$ and M ranging from 0 to 10 respectively. The object of this study is to provide the first results on forced convection-radiation interaction in boundary layer flow over a semi-infinite flay plate which can be used for comparisons with future studies that will consider a more accurate expression for the radiative heat flux. The agreement of the results from the complete solution presented by E. M. Sparrow and those from this paper for the special case of M=0 is good. The overall rate of heat transfer from the fin considering radiative effect is higher than that from the fin neglecting radiative effect. The local heat transfer coefficient with radiative effect is higher than that without radiative effect. In the direction from tip to base, those coefficients decrease at first, attain minimum, and then increase. The larger values of N$_{c}$ M, Pr give rise to larger fin temperature variations and the fin temperature without radiative effect is always higher than that with radiative effect.

Seasonal Variation of Soil Entrapped Methane and Dissolved Methane Flux in a Paddy Soil (논토양에서 배출된 메탄과 토양용액중 용존 메탄의 계절변이)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.41-45
    • /
    • 1997
  • This study was conducted to investigate methane production, emission and diffusion under organic matter application in paddy soil (Jeonbug Series). The rates of application of rice straw were 5,000kg/ha in combination with 110kg N/ha as chemical fertilizer. In seasonal variations of the $CH_4$ emission rates two maxima were found during the ear formation stage and the heading stage of the rice plant. Entrapped methane increased dining the early growing season, declined thereafter and especially increased during the heading stage. Methane concentration in the soil solution was the higest at 5cm depth, but decreased with upper and lower depth. The gas diffusion rate of $CH_4$ was very slow in the liquid phase. Eh of soil solution varied from -150~-160mV and methane prodution rate was highly correlated with Eh.

  • PDF

A Study on Contamination of Hydrogen Permeable Pd- based Membranes (Pd 계열 수소 분리막의 오염에 관한 연구)

  • Han, Jonghee;Yoon, Sung Pil;Nam, Suk Woo;Lim, Tae-Hoon;Hong, Seong-Ahn;Kim, Jinsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • $H_2$ permeation flux though a $100{\mu}m-thick$ Pd-Ru (6wt%) membrane was measured at various temperatures and pressures. The permeation flux followed the Sievert's law and thus the rate-limiting step of the hydrogen permeation was the bulk atomic diffusion step. The activation energy of the permeation flux was obtained at 17.9 kJ/mol and this value is consistent with those published previously. While no degradation of the permeation flux wasfound in the membrane exposed to the $O_2$ and $CO_2$ environments for 100 hours, the membrane exposed to $N_2$ environment for 100 hours showed the degradation in the $H_2$ permeation flux. The $H_2$ permeation was decreased as the exposure temperature to $N_2$, environment was increased. The $H_2$ permeation flux was fully recovered after the membrane was kept in the $H_2$ environment for certain time. The permeation flux degradation might be caused by the formation of metal nitride on the membrane surface.

Electrotransport of Donepezil Hydrochloride from Poly(ethylene oxide) Hydrogel (폴리에틸렌옥사이드 하이드로겔을 이용한 도네페질염산염의 이온토포레시스 피부투과)

  • Choi, Yu-Ri;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.2
    • /
    • pp.91-100
    • /
    • 2010
  • The objective of this work is to study transdermal delivery of donepezil hydrochloride (DH) using iontophoresis and to evaluate various factors which affect the transdermal transport. After the flux study using 4 kinds of hydrogel, hydrogel containing 8% poly(ethylene oxide) (PEO) was chosen as the hydrogel for further studies. Under experimental condition, DH was stable. We have studied the effect of polarity, current density, drug concentration and current profile on transdermal flux and compared the results. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. DH is positively charged at pH 7.4, and anodal delivery was much larger than cathodal and passive delivery at all current densities studied (0.2, 0.4 and 0.6 mA/$cm^2$). Cathodal delivery showed higher flux than passive flux. Flux increased as the concentration of DH in hydrogel increased. Pulsatile application of current showed smaller flux value than the application of continuous current. Based on these results, we have evaluated the possibility of delivering enough amount of DH to reach the therapeutic level. The maximum cumulative amount of DH transported for 12 hours was 455 ${\mu}g/cm^2{\cdot}hr$ when the amount of DH in the hydrogel was 3 mg/mL and the current density was 0.4 mA/$cm^2$. If the patch size is 10 $cm^2$, then we can deliver 4.6 mg for 12 hours. Because the daily dosage of DH is 5 mg, it seems possible to deliver clinically effective amount of DH using iontophoresis. This study also provides some information about the role of electrorepulsion and electroosmosis during the transport through skin.

Green-Emitting Silicate Phosphor Under Long Wavelength Ultraviolet Prepared by High Temperature Flame Spray Pyrolysis (고온 화염분무열분해법에 의해 합성된 장파장 자외선 하에서의 녹색 발광 실리케이트 형광체)

  • Cho, Jung-Sang;Koo, Hye-Young;Lee, Sang-Ho;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.77-83
    • /
    • 2008
  • Green-emitting $Ba_{1.468}Sr_{0.5}SiO_4\;:\;Eu_{0.012},\;Y_{0.02}$ phosphor powders under long-wavelength ultraviolet light were prepared via high-temperature flame spray pyrolysis from spray solutions with and without $NH_4Cl$ flux. The effects of the temperature of the diffusion flame and the $NH_4Cl$ flux on the morphologies, crystal structures and photoluminescence intensities of the $Ba_{1.468}Sr_{0.5}SiO_4\;:\;Eu_{0.012},\;Y_{0.02}$ phosphor powders were investigated. The phosphor powders obtained from the spray solution with the $NH_4Cl$ flux had higher photoluminescence intensities compared to phosphor powders obtained from the spray solution without the flux. The photoluminescence intensity of the phosphor powders obtained from the spray solution without the flux decreased as the flow rate of the fuel gas increased. On the other hand, the photoluminescence intensity of the phosphor powders obtained from the spray solution with the flux increased as the flow rate of the fuel gas increased. The difference of in the phase purity and morphology of the powders affected the photoluminescence intensities of the phosphor powders.

Combustion Characteristics and Soot Formation in a Jet Diffusion Flame (제트 확산화염의 연소특성과 매연생성에 관한 연구)

  • 이교우;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2712-2723
    • /
    • 1994
  • Numerical simulation of an axisymmetric ethylene-air jet diffusion flame has been carried out in order to investigate flame dynamics and soot formation. The model solves the time-dependent Navier-Stokes equations and includes models for soot formation, chemical reaction, molecular diffusion, thermal conduction, and radiation. Numerically FCT(Flux Corrected Transport) and DOM(Discrete Ordinate Method) methos are used for convection and radiation trasport respectively. Simulation was conducted for a 5 cm/sec fuel jet flowing into a coflowing air stream. The maximum flame temperature was found to be approximately 2100 K, and was located at an axial position of approximately 5 cm from the base of the flame. The maximum soot volume fraction was about $7{\times}10^{-7}$, and was located within the high temperature region where the fuel mole fraction ranges from 0.01 to 0.1. The buoyancy-driven low-frequency(12~13 Hz) structures convected along the outer region of the flame were captured. In case without radiation trasport, the maximum temperature was higher by 150 K than in case with radiation. Also the maximum soot volume fraction reached about $8{\times}10^{-6}$. As the the hydrocarbon fuel forms many soot particles, the radiation transport becomes to play a more important role.

Diffusion Coefficients and Membrane Potential within Carrier Membrane by Reverse Transport System

  • Yang, Wong-Kang;Jeong, Sung-Hyun;Lee, Won-Chul
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.36-40
    • /
    • 2002
  • The diffusion coefficients of ions in the reverse transport system using the carrier mediated membrane were estimated from the diffusional membrane permeabilities and the ion activity in membrane system. In the aqueous alkali metal ions-membrane system diffusional flux of alkali metal ions driven by coupled proton was analyzed. The aqueous phase I contained NaOH solution and the aqueous phase II also contained NaCl and HCl mixed solution. The concentration of Na ions of both phases were $10^{0},\;10^{-1},\;10^{-2},\;5{\times}10^{-1}\;and\;5{\times}10^{-2}\;mol{\cdot}dm^{-3}$ and the concentration of HCI in aqueous phase II was always kept at $1{\times}10^{-1}\;mol{\cdot}dm^{-3}$. Moreover, the carrier concentration in liquid membrane was $10^{-2}\;mol{\cdot}dm^{-3}$. The results indicated that the diffusion coefficients depend strongly on the concentration of both phases electrolyte solution equilibriated with the membrane. The points were interpreted in terms of the energy barrier theory. Furthermore, eliminating the potential terms from the membrane equation was derived.

Thermal Flux Analysis for the Wearable NOx Gas Sensors (웨어러블 NOx 가스센서의 열유동 해석)

  • Jang, Kyung-uk
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.793-799
    • /
    • 2019
  • In this study, the diffusion process and the thermal energy distribution gradient of the sensor were confirmed by using the finite element analysis program (COMSOL) of the mesh method to analyze the thermal diffusion in the wearable fabric (Nylon) + MWCNT gas sensor. To analyze the diffusion process of thermal energy, the structure of the gas sensor was modeled in a two dimension plane. The proposed modeling was presented with the characteristic value for the component of the sensor, and the gas sensor designed using the mesh finite element method (FEM) was proposed and analyzed by suggesting the one-way partial differential equation in the governing equation to know the degree of thermal energy diffusion and the thermal energy gradient. In addition, the temperature gradient 10[K/mm] of the anode-cathode electrode layer and the gas detection unit was investigated by suggesting the heat velocity transfer equation.

Stability analysis in BWRs with double subdiffusion effects: Reduced order fractional model (DS-F-ROM)

  • Gilberto Espinosa-Paredes;Ricardo I. Cazares-Ramirez;Vishwesh A. Vyawahare;Erick-G. Espinosa-Martinez
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1296-1309
    • /
    • 2024
  • The aim of this work is to explore the effect of the double subdiffusion on the stability in BWRs. A BWR novel reduced order model with double subdiffusion effects: reduced order fractional model (DS-F-ROM) to describe the neutron and heat transfer processes was proposed for this study. The double subdiffusion was developed with a fractional-order two-equation model, and with different fractional-orders and relaxation times. The stability analysis was carried out using the root-locus method and change from the s to the W domain and were confirmed using the time-domain evolution of neutron flux for a unit step change in reactivity. The results obtained using the reduced fractional-order model are presented for different anomalous diffusion coefficient values. Results are compared with normal diffusion and P1 equations, which are obtained straightforwardly with DS-ROM when relaxation time tends to zero, and when the anomalous diffusion coefficient tends to one, respectively.