DOI QR코드

DOI QR Code

Electrotransport of Donepezil Hydrochloride from Poly(ethylene oxide) Hydrogel

폴리에틸렌옥사이드 하이드로겔을 이용한 도네페질염산염의 이온토포레시스 피부투과

  • Choi, Yu-Ri (College of Pharmacy, Sookmyung Women's University) ;
  • Oh, Seaung-Youl (College of Pharmacy, Sookmyung Women's University)
  • 최유리 (숙명여자대학교 약학대학) ;
  • 오승열 (숙명여자대학교 약학대학)
  • Received : 2010.04.02
  • Accepted : 2010.04.07
  • Published : 2010.04.20

Abstract

The objective of this work is to study transdermal delivery of donepezil hydrochloride (DH) using iontophoresis and to evaluate various factors which affect the transdermal transport. After the flux study using 4 kinds of hydrogel, hydrogel containing 8% poly(ethylene oxide) (PEO) was chosen as the hydrogel for further studies. Under experimental condition, DH was stable. We have studied the effect of polarity, current density, drug concentration and current profile on transdermal flux and compared the results. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. DH is positively charged at pH 7.4, and anodal delivery was much larger than cathodal and passive delivery at all current densities studied (0.2, 0.4 and 0.6 mA/$cm^2$). Cathodal delivery showed higher flux than passive flux. Flux increased as the concentration of DH in hydrogel increased. Pulsatile application of current showed smaller flux value than the application of continuous current. Based on these results, we have evaluated the possibility of delivering enough amount of DH to reach the therapeutic level. The maximum cumulative amount of DH transported for 12 hours was 455 ${\mu}g/cm^2{\cdot}hr$ when the amount of DH in the hydrogel was 3 mg/mL and the current density was 0.4 mA/$cm^2$. If the patch size is 10 $cm^2$, then we can deliver 4.6 mg for 12 hours. Because the daily dosage of DH is 5 mg, it seems possible to deliver clinically effective amount of DH using iontophoresis. This study also provides some information about the role of electrorepulsion and electroosmosis during the transport through skin.

Keywords

References

  1. J.H. Jhoo, K.W. Kim, Y. Huh, S.B. Lee, J.H. Park, J.J. Lee, E.A. Choi, C. Han, I.H. Choo, J.C. Youn, D.Y. Lee and J.I. Woo. Prevalence of dementia and its subtypes in an elderly urban Korean population: results from the Korean Longitudinal Study on Health And Aging (KLoSHA), Dement. Geriatr. Cogn. Disord., 26(3), 270-276 (2008). https://doi.org/10.1159/000160960
  2. R. Brookmeyer, E. Johnson, K. Ziegler-Graham and H.M. Arrighi, Forecasting the global burden of Alzheimer's disease, Alzheimers Dement., 3(3), 186-191 (2007). https://doi.org/10.1016/j.jalz.2007.04.381
  3. E. England, Improving the management of dementia. BMJ, 332(7543), 681-682 (2006). https://doi.org/10.1136/bmj.332.7543.681
  4. H.W. Querfurth and F.M. LaFerla, Alzheimer's Disease, N. Engl. J. Med., 362, 329-344 (2010). https://doi.org/10.1056/NEJMra0909142
  5. P.T. Francis, A.M. Palmer, M. Snape and G.K. Wilcock, The cholinergic hypothesis of Alzheimer's disease: a review of progress, J. Neurol. Neurosurg. Psychiatry., 66(2), 137-147 (1999). https://doi.org/10.1136/jnnp.66.2.137
  6. S. Lesne, M.T. Koh, L. Kotilinek, R. Kayed, C.G. Glabe, A. Yang, M. Gallagher and K.H. Ashe, A specific amyloid-beta protein assembly in the brain impairs memory, Nature, 440(7082), 352-357 (2006). https://doi.org/10.1038/nature04533
  7. C. Zhao, W. Deng and F.H. Gage. Mechanisms and functional implications of adult neurogenesis, Cell, 132(4), 645-660 (2008). https://doi.org/10.1016/j.cell.2008.01.033
  8. R.S. Upasani and A.K. Banga, Response surface methodology to investigate the iontophoretic delivery of tacrine hydrochloride. Pharm. Res., 21(112), 2293-2299 (2004). https://doi.org/10.1007/s11095-004-7682-6
  9. T. Kankkunen, R. Sulkava, M. Vuorio, K. Kontturi and J. Hirvonen, Transdermal iontophoresis of tacrine in vivo, Pharm. Res., 19(5), 704-707 (2002).
  10. S.L. Rogers, R.S, Doody, R.C. Mohs and L.T. Friedhoff, Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebocontrolled study, Arch. Intern. Med., 158(9), 1021-1031 (1998). https://doi.org/10.1001/archinte.158.9.1021
  11. N. Giladi, H. Shabtai, T. Gurevich, B. Benbunan, M. Anca and A.D. Korczyn, Rivastigmine (Exelon) for dementia in patients with Parkinson's disease, Acta. Neurol. Scand., 108(5), 368-373 (2003). https://doi.org/10.1034/j.1600-0404.2003.00211.x
  12. A.Z. Ables, Memantine (Namenda) for moderate to severe Alzheimer's disease, Am. Fam. Physician, 69(6), 1491-1492 (2004).
  13. B. Winblad, J. Cummings, N. Andreasen, G. Grossberg, M. Onofrj, C. Sadowsky, S. Zechner, J. Nagel and R. Lane, A six-month double-blind, randomized, placebo-controlled study of a transdermal patch in Alzheimer's diseaserivastigmine patch versus capsule, Int. J. Geriatr. Psychiatry, 22(5), 456-467 (2007). https://doi.org/10.1002/gps.1788
  14. D.P. Reiss, Physician's Desk Reference, 53th ed, Montvale : Medical Economics Company, 2364-2367 (1999).
  15. M.L. Crismon, Pharmocokinetics and drug interaction of cholinesterase inhibitors administered in Alzheimer’s disease, Pharmacotherapy, 18(2Pt2), 47-54 (1988).
  16. P.S. Kishnani, J.A. Sullivan, B.K. Walter, G.A. Spiridigliozzi, P.M. Doraiswamy and K.R. Krishnan, Cholinergic therapy for Down’s syndrome, Lancet, 353(9158), 1064-1065 (1999). https://doi.org/10.1016/S0140-6736(98)05285-4
  17. S.L. Rogers and L.T. Friedhoff, The efficacy and safety of donepezil in patients with Alzheimer's disease: results of a US multicenter, randomized, double-blind, placebo-controlled study, Dementia, 7(6), 293-303 (1996).
  18. H. Choi (Ed.), Transdermal dosage form, Shinil publication, 136-138 (1999).
  19. Y.W. Chien and C.S. Lee, In Controlled Release Technology: Pharmaceutical Applications (Ed. P.I. Lee and W.R. Good), J. Am. Chem. Soc., Washington DC, chapter 21 (1987).
  20. Y.N. Kalia, A. Naik, J. Garrison and R.H. Guy, Iontophoretic drug delivery, Adv. Drug Deliv. Rev., 56(5), 619-658 (2004). https://doi.org/10.1016/j.addr.2003.10.026
  21. J.Y. Fang, K.C. Sung, H.H. Lin and C.L. Fang, Transdermal iontophoretic delivery of diclofenac sodium from various polymer formulations: in vitro and in vivo studies, Int J Pharm., 178(1), 83-92 (1999). https://doi.org/10.1016/S0378-5173(98)00361-5
  22. B. Langer, New methods of drug delivery, Science, 249(4976), 1527-1533 (1990). https://doi.org/10.1126/science.2218494
  23. M.D. Blanco, O. Garca, R. Olmo, J.M. Teijon and I. Katime, Release of 5-fluorouracil from poly (acrylamide-comonopropyl itaconate) hydrogels, J. Chromatogr. B. Biomed. Appl., 680, 243-253 (1996). https://doi.org/10.1016/0378-4347(95)00401-7
  24. F.E. Bailey Jr. and J.V. Koleske, poly (ethylene oxide), Academic Press, New York, U.S.A. (1976).
  25. F.G. Hutchinson, Medical and pharmaceutical applications of water-soluble polymers : In Chemistry and Technology of water-soluble polymers, C.A. Finch (Ed.), Plenum Press, New York, U.S.A., 267-285 (1983).
  26. N.B. Graham, Poly (ethylene oxide) and related hydrogels : In Hydrogels in Medicine and Pharmacy, Vol11, N.A. Peppas (Ed.), CRC Press, Boca Raton, U.S.A., 95-113 (1987).
  27. S.A. Jung, H.S. Gwak, I.K. Chun and S.Y. Oh, Levodopa transport through skin using iontophoresis: the role of electroosmosis and electrorepulsion, J. Kor. Pharm. Sci., 38(1), 31-38 (2008).
  28. J.E. Riviere and M.C. Heit, Electrically-assisted transdermal drug delivery, Pharm. Res., 14(6), 687-697 (1997). https://doi.org/10.1023/A:1012129801406
  29. O.D. Uitto and H.S. White, Electroosmotic pore transport in human skin, Pharm. Res., 20(4), 646-652 (2003). https://doi.org/10.1023/A:1023259102279
  30. V. Merino, A. Lopez, Y.N. Kalia and R.H. Guy, Electrorepulsion versus electroosmosis : effect of pH on the iontophoresis flux of 5-fluorouracil, Pharm. Res., 16(5), 758-761 (1999). https://doi.org/10.1023/A:1018841111922
  31. J. Hirvonen and R.H. Guy, Transdermal iontophoresis: modulation of electroosmosis by polypeptides, J. Control. Release, 50, 283-289 (1998). https://doi.org/10.1016/S0168-3659(97)00150-8
  32. S. Oh, Effect of formulation additives on the electroosmosis during iontophoresis, Abrtracts, The fifth asian international symposium on biomaterials, Biomaterial society of China, p. 308 (2006).
  33. A. Kim, P.G. Green, G.Rao and R.H. Guy, Convective solvent flow across the skin during iontophoresis, Pharm. Res., 10(9), 1315-1320 (1993). https://doi.org/10.1023/A:1018969713547
  34. D. Marro, R.H. Guy and M.B. Delgado-Charro, Characterization of the iontophoretic permselectivity properties of human and pig skin, J. Control. Release., 70, 213-217 (2001). https://doi.org/10.1016/S0168-3659(00)00350-3
  35. R.H. Guy, Y.N. Kalia, M.B. Delgado-Charro, V. Merino, A. Lopez and D. Marro, Iontophoresis : electrorepulsion and electroosmosis, J. Control. Rel., 64, 129-132 (2000). https://doi.org/10.1016/S0168-3659(99)00132-7
  36. B.D. Bath, H.S. White and E.R. Scott, Visualization and analysis of electroosmotic in hairless mouse skin, Pharm. Res., 17(4), 471-475 (2000). https://doi.org/10.1023/A:1007589306661
  37. D. Marro, R.H. Guy, and M.B. Delgado-Charro, Characterization of the iontophoretic permselectivity properties of human and pig skin, J. Control. Release, 70, 213-217 (2001). https://doi.org/10.1016/S0168-3659(00)00350-3
  38. P.C. Kuo, Kinetics of transdermal permeation of oxycodone HCl and the enhancement by iontophoresis, M. Sc. thesis, Rutgers University, New Brunswick, N J.
  39. J.C. Liu, Y. Sun, O. Siddiqui, Y.W. Chien, W. M. Shi and J. Li, Blood glucose control in diabetic rats by transdermal iontophoretic delivery of insulin, Int. J. Pharma., 44, 197-204 (1988). https://doi.org/10.1016/0378-5173(88)90116-0
  40. R.R. Burnette and T.M. Bagniefski, Influence of constant current iontophoresis on the impedance and passive Na+ permeability of excised mouse skin, J. Pharm. Sci., 77(6), 492-497 (1988). https://doi.org/10.1002/jps.2600770606