• Title/Summary/Keyword: Diffractive optical elements

Search Result 40, Processing Time 0.019 seconds

Process Study of Direct Laser Lithographic System for Fabricating Diffractive Optical Elements with Various Patterns (다중 패턴의 회절광학소자 제작을 위한 레이저 직접 노광시스템의 공정 연구)

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2019
  • Diffractive Optical Elements(DOEs) diffracts incident light using the diffraction phenomenon of light to generate a desired diffraction image. In recent years, the use of diffraction optics, which can replace existing refractive optical elements with flat plates, has been increased by implementing various optical functions that could not be implemented in refractive optical devices and by becoming miniaturized and compacted optical elements. Direct laser lithography is typically used to effectively fabrication such a diffractive optical element in a large area with a low process cost. In this study, the process conditions for fabricating patterns of diffractive optical elements in various shapes were found using direct laser lithographic system, and optical performance evaluation was performed through fabrication.

Recent Advances in Diffractive- and Micro-Optics Technology

  • Morris, G.Michael
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.4-4
    • /
    • 2003
  • Diffractive- and micro-optics technology Provides new degrees of freedom for the design and optimization of optical systems. In this talk emphasis will be placed on recent advances in the design and fabrication of precision, micro- structured optical elements and their applications in the optical telecommunication, vision-care, illumination and display markets. (omitted)

  • PDF

Telephotolens design with refractove/diffractive hybrid lens

  • Hong, Young-Ghi;Kim, Sun-Il;Yeo, Wan-Gu;Lee, Chul-Koo
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.74-80
    • /
    • 1997
  • 300mm F/4.0 telephotolens with diffractive hybrid lens was designed, and its optical performance was tested and compared with a traditional lens system. DOE(Diffractive Optical Element) reconstructs wavefronts using wave phenomena of light to focus the incident light onto the focal point and has negative Abbe number while a traditional lens uses geometrical phenomena of light and has positive Abbe number. Therefore, a diffractive hybrid lens containing both refractive and diffractive elements can remarkably correct chromatic aberration and spherical aberration of an optical system. We investigated and analyzed the optical properties of a diffractive hybrid lens for the visible spectrum, and we used a difractive hybrid lens to design and evaluate a 300mm F/4.0 telephotolens without the special LD(Low Dispersive) glass lens which is costly and difficult to manufacture. Most traditional telephotolenses use the special LD glass for chromatic aberration correcton. Optical performance tests such as resolution and characteristics of aberration of both lens systems using a diffractive hybrid lens and traditional lens were performed.

Fabrication of Refractive/Diffractive Micro-Optical Elements Using Micro-Compression Molding (마이크로 압축성형 공정을 이용한 굴절/회절용 마이크로 광부품 성형)

  • Moon S.;Ahn S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.200-203
    • /
    • 2001
  • Micromolding methods such as micro-injection molding and micro-compression molding are most suitable for mass production of plastic micro-optics with low cost. In this study, plastic micro-optical components, such as refractive microlenses and diffractive optical elements(DOEs) with various grating patterns, were fabricated using micro-compression molding process. The mold inserts were made by ultrapricision mechanical machining and silicon etching. A micro compression molding system was designed and developed. Polymer powders were used as molded materials. Various defects found during molding were analyzed and the process was optimized experimentally by controlling the governing process parameters such as histories of mold temperature and compression pressure. Mim lenses of hemispherical shape with $250{\mu}m$ diameter were fabricated. The blazed and 4 stepped DOEs with $24{\mu}m$ pitch and $5{\mu}m$ depth were also fabricated. Optical and geometrical properties of plastic molded parts were tested by interferometric technique.

  • PDF

Optical system design for compact digital still camera using diffractive optical elements (회절광학소자를 이용한 컴팩트 디지털 스틸 카메라용 광학계 설계)

  • 박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.239-245
    • /
    • 2000
  • In this paper, the fundamental properties of diffractive optical element were investigated. Also, this work deals with theoretical approaches for achromatization in DOE's optical system based on thin lens theory. It is found that achromatization could be satisfied by one hybrid lens only, which is composed of a diffractive and a refractive element. In order to have compact optical system, we used the tele-photo type lens composed of a positive and a negative power elements instead of retro-focus lens. From the Gaussian brackets and Seidel aberration theory, the initial design was numerically obtained. The aberration properties of an initial design was aplanat and flat field. In order to correct the chromatic aberrations, refractive and diffractive elements were used on front element. This hybrid lens is also useful for correction of higher order aberrations. Compared to conventional design composed of refractive lenses only, this approach dramatically improved the compactness of the optical system. Finally, residual aberration balancing results in a lens with focal length of 3.89 mm and overall length of 5.19 mm, which has enough performance over an f-number of 4.0. Also, it is expected to fulfill all the requirements of a digital still camera lens. This optical system is superior to the current refractive lens system in the number of elements, weight, and aberration properties. rties.

  • PDF

Diffractive Optical Element for Noise-reduced Beam Shaping of Multi-array Point Light Source

  • Lee, Jonghyun;Hahn, Joonku;Kim, Hwi
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.506-513
    • /
    • 2021
  • An arrayed diffractive optical element design for the beam-shaping of a multi-array light source is proposed. This is an essential device for recent optical security and face recognition applications. In practice, we devise a DC noise reduction technique featuring high fabrication error tolerance regarding the multi-array light source diffractive optical elements, as a necessary part of the proposed design method. The spherical diverging illumination leads to DC-conjugate noise spreading. The main idea is tested experimentally, and the multi-array light source diffraction pattern is investigated numerically.

Compact See-though Near to Eye Display with Diffractive Optical Elements

  • Levola, Tapani
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1749-1752
    • /
    • 2007
  • The Near to Eye Display (NED) solves the problem of having a display larger than a small portable device. The virtual image of the NED is created using a microdisplay and imaging optics. It is important that the optics does not interfere with the human visual system and that the device is light, compact and easy to wear. In this paper the principles of a biocular NED, which is based on a novel diffractive Exit Pupil Expander (EPE), are presented. The optical system is compact and intrinsically free from distortions and misalignments.

  • PDF

Image Quality Evaluation and Tolerance Analysis for Camera Lenses with Diffractive Element

  • Lee, Sang-Hyuck;Jeong, Ho-Seop;Jin, Young-Su;Song, Seok-Ho;Park, Woo-Je
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.105-111
    • /
    • 2006
  • A novel image quality evaluation method, which is based on combination of the rigorous grating diffraction theory and the ray-optic method, is proposed. It is applied for design optimization and, tolerance analysis of optical imaging systems implementing diffractive optical elements (DOE). The evaluation method can predict the quality and resolution of the image on the image sensor plane through the optical imaging system. Especially, we can simulate the effect of diffraction efficiencies of DOE in the camera lenses module, which is very effective for predicting different color sense and MTF performance. Using this method, we can effectively determine the fabrication tolerances of diffractive and refractive optical elements such as the variations' in profile thickness, and the shoulder of the DOE, as well as conventional parameters such as decenter and tilt in optical-surface alignments. A DOE-based 2M-resolution camera lens module designed by the optimization process based on the proposed image quality evaluation method shows ${\sim}15%$ MTF improvement compared with a design without such an optimization.

Diffractive Optic Elements (회절광학 소자 렌즈)

  • 최종곤
    • Optical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.22-26
    • /
    • 2004
  • 회절 광학 소자(Diffractive optical element)는 광학 시스템에 있어서 광을 조절하기 위하여 굴절(refraction) 또는 반사(reflection)보다는 주기 구조(periodic structures)에 의한 회절(diffraction)을 이용한 소자라 할 수 있다. DOE의 장점으로는 수차(aberration)가 없는 point-to-point 이미지가 가능하며 광 power를 사용한 평판(flat subface)이 가능하고 비구면과 같은 수차 조절이 가능하다. 단점으로는 HOE(Hologram Optical Element: DOE의 일종)의 수차가 이 구조의 특정 파장에서 나타나고 가시영역의 일정 영역에서 매우 분산적 (dispersive)이다. 또한 상대적으로 시장의 성장에 비하여 찾는 고객의 수가 적다는 점이다.(중략)

  • PDF

Optical system design fur head mounted display using diffractive optical elements (회절광학소자를 이용한 Head Mounted Display용 광학계 설계)

  • 박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.512-518
    • /
    • 2001
  • In this paper, the geometrical properties of the optical system for Head Mounted Display (HMD) were investigated. Also, this work deals with the concept for an optical system design bated on Diffractive Optical Elements (DOE). In designing the optical system for HMD, it is considered that the optical system should have compact, high performance, and comfortable properties while user sees the picture. In order to satisfy these requirements, we applied DOE and aspheric surfaces to the lens so that correction of color and monochromatic aberrations could be obtained. Also, the design and evaluation for the optical system were carried out using the generalized model of the human eye. Finally, it was expected to fulfill all the requirements of an HMD system.

  • PDF