• Title/Summary/Keyword: Diffraction angle

Search Result 398, Processing Time 0.033 seconds

Feasibility Study of the Light-outcoupling Characteristics of a Diffraction-grating-imprinted Light-guide Plate for an LCD Backlight Unit (LCD 백라이트 유닛의 서브 마이크론 회절 격자 도광판의 광 출사 특성 연구)

  • Choi, Hwan Young
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.4
    • /
    • pp.176-182
    • /
    • 2020
  • The possibility of replacing the condensing-prism film used in conventional backlight units with a light-guide plate engraved with a submicrometer-periodic diffraction grating was investigated. The optimal period for the diffraction grating was determined through simulation and experiment, and the transmission-mode efficiency of the diffraction grating was calculated in terms of the polar angle and azimuthal angle of the incident light. In addition, the effects of the two methods of optimizing the polar angle and the directional angle were compared by simulation, by suggesting the shape and configuration of the light-guide plate, so that more light could be extracted by diffraction. By using a ray-tracing program, the luminance angular distribution of the light-guide plate engraved with the diffraction grating was calculated and compared to the luminance angular distribution for each actual prototype.

Frequency domain analysis of Froude-Krylov and diffraction forces on TLP

  • Malayjerdi, Ebrahim;Tabeshpour, Mohammad Reza
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.233-244
    • /
    • 2016
  • Tension Leg Platform (TLP) is a floating structure that consists of four columns with large diameter. The diffraction theory is used to calculate the wave force of floating structures with large dimensions (TLP). In this study, the diffraction and Froude-Krylov wave forces of TLP for surge, sway and heave motions and wave force moment for roll, pitch degrees of freedom in different wave periods and three wave approach angles have been investigated. From the numerical results, it can be concluded that the wave force for different wave approach angle is different. There are some humps and hollows in the curve of wave forces and moment in different wave periods (different wavelengths). When wave incidents with angle 0 degree, the moment of diffraction force for pitch in high wave periods (low frequencies) is dominant. The diffraction force for heave in low wave periods (high wave frequencies) is dominant. The phase difference between Froude-Krylov and diffraction forces is important to obtain total wave force.

Correction of image distortion of CGH with a large diffraction angle (큰 회절각을 가진 CGH의 위치에 대한 오차의 보정)

  • Lee, Jai-Cheol;Oh, Yong-Ho;Go, Chun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.128-132
    • /
    • 2005
  • Most CGH programs use a model equation based on the diffraction angle. Therefore, if the diffraction angle is large enough, the image on a flat screen is distorted. To correct the distortion, we created the model equation from diffraction theory and verified it through experiment. We also suggest a design method that compensates for the distortion without changing the CGH program.

Studies on Nanostructured Amorphous Carbon by X-ray Diffraction and Small Angle X-ray Scattering

  • Dasgupta, K.;Krishna, P.S.R.;Chitra, R.;Sathiyamoorth, D.
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.10-13
    • /
    • 2003
  • The structural studies of amorphous isotropic carbon prepared from pyrolysis of phenol formaldehyde resin have been carried out using X-ray diffraction. X-ray diffraction from as prepared sample at $1000^{\circ}C$ and a sample treated at $1900^{\circ}C$ revealed that both are amorphous even though there are small differences in short range order. It is found that both are graphite like carbon (GLC) with predominantly $sp^2$ hybridization. Small angle X-ray scattering results show that as prepared sample mainly consists of thin two dimensional platelets of graphitic carbon whereas they grow in thickness to become three dimensional materials of nano dimensions.

  • PDF

Optical Analysis of Diffraction Grating and Fresnel Zone Plate Fabricated on Fused Silica Glass by a Femtosecond Laser (펨토초 레이저를 이용한 회절격자와 Fresnel Zone Plate 제작 및 광학적 분석)

  • Ryu, Jin-Chang;Kim, Jin-Tae;Sohn, Ik-Bu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.18-26
    • /
    • 2010
  • Diffraction gratings with precise spatial periods of 2 ${\mu}m$ and 5 ${\mu}m$ have been fabricated by using a femtosecond laser which does not have limits on materials of micromachining and small thermal effects due to high peak power. Diffraction angle and diffraction efficiency of those were measured. Simulation results of diffraction angle and diffraction efficiency of the diffraction grating calculated with the parameters such as line width, depth, and spatial period of the fabricated gratings were compared with experimental results measured with a He-Ne laser. Besides these, Fresnel Zone Plates (FZPs) with focal distances of 50 mm and 25 mm were fabricated and focal distances of fabricated FZP were measured. Those experimental results for diffraction gratings and FZPs match well with experimental results.

The exposure-time schedule for uniform diffraction efficiency in angle/fractal multiplexing of holographic data storage (홀로그래픽 저장장치의 각/프랙탈 다중화 방식에서 균일한 회절 효율을 위한 기록 시간 분배)

  • Lee, Jae-Sung;Choi, Jin-Young;Yang, Hyun-Seok;Park, Young-Pil;Park, No-Chul
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.139-144
    • /
    • 2005
  • Because of the photorefractive recording dynamics, each newly recorded hologram partially erases all previously stored image. Thus achieving the desired diffraction efficiency profile for the entire sequence after all images have been recorded requires exposure time schedule. The often cited classical exposure-schedule model predicts a rising-exponential build-up and an exponential decay in An with an exposure time. However because we cannot directly measure the An, it's difficult to establish the relation of both. In this paper, we deduce the relation of diffraction efficiency and exposure time from experiment data and suggest an algorithm to make time schedule profile in angle/fractal multiplexing of holographic data storage. After that, we present simulated result with equal hologram diffraction efficiency for a sequence of 250 holograms recorded by angle/fractal multiplexing.

  • PDF

A study on the diffraction in volume hologram using Perturbative integral expansion. (적분전개법을 이용한 체적홀로그램에서의 회절에 관한 연구)

  • Lee, Hong-Seok;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.385-387
    • /
    • 1994
  • Optical interconnections are more attractive than electronic interconnections because of their higher speed, freedom from planar constraints, immunity to electromagnetic interference effects and higher interconnection capacity. Volume hologram is one of the best way to implement optical interconnections. Diffraction efficiency and crosstalk effect are very important things for ensuring independent interconnections. Recently, a general systematic method that can handle a large number of superposed volume gratings in anisotropic host material is presented. In this study for numerical analysis of diffraction, above method is programmed in general form near Bragg angle. Diffraction orders for variation of grating strength are determined by comparing with the coupled-mode method. The effects of parameter variation are considered. Parameters include vertical and azimuthal incident angle, wavelength and interaction length. Diffraction analyses are also performed for intra-mode and inter-mode diffractions.

  • PDF

Theory of Imaging And Diffraction (TEM 관련 이론해설 (3): 영상 형성이론과 회절이론)

  • Lee, Hwack-Joo
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.169-178
    • /
    • 2003
  • In this review, theoretical approaches of imaging and diffraction in electron microscopy are introduced which allows the diffraction patterns and images to be treated with equal facility and emphasized the relationships between them. The coherent wave optics, incoherent wave imaging theory were introduced. The idea of Abbe theory was also introduced. Varoius phase contrast theories in small angle approximation were derived including the wave theory on Multi-component system.

Wide-fan-angle Flat-top Linear Laser Beam Generated by Long-pitch Diffraction Gratings

  • Lee, Mu Hyeon;Ryu, Taesu;Kim, Young-Hoon;Yang, Jin-Kyu
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.500-505
    • /
    • 2021
  • We demonstrated a wide-fan-angle flat-top irradiance pattern with a very narrow linewidth by using an aspheric lens and a long-pitch reflective diffraction grating. First, we numerically designed a diffraction-based linear beam homogenizer. The structure of the Al diffraction grating with an isosceles triangular shape was optimized with 0.1-mm pitch, 35.5° slope angle, and 0.02-mm radius of the rounding top. According to the numerical results, the linear uniformity of the irradiance was more sensitive to the working distance than to the shape of the Al grating. The designed Al grating reflector was fabricated by using a conventional mold injection and an Al coating process. A uniform linear irradiance of 405-nm laser diode with a 100-mm flat-top length and 0.176-mm linewidth was experimentally demonstrated at 140-mm working distance. We believe that our proposed linear beam homogenizer can be used in various potential applications at a precise inspection system such as three-dimensional morphology scanner with line lasers.

Diffraction of Electromagnetic Waves by a Dielectric Wedge, Part I: Physical Optics Approximation (쇄기형 유전체에 의한 전자파의 회절, I부 : 물리광학근사)

  • 김세윤;라정웅;신상영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.8
    • /
    • pp.874-883
    • /
    • 1988
  • A complete form of physical optics solution to the diffraction of electromagnetic waves by a dielectric wedge with arbitrary dielectric constant and general wedge angle is obtained for an incident plane wave with any angle. Based on the formulation of dual integral equation in the spectral domain, the physical optics solution is constructed by sum of geometrical optics term including multiple reflection inside the wedge and the edge diffracted field, of which diffraction functions are represented in a quite simple form as series of cotangent functions weighted by the Fresnel reflection coefficients. Since diffraction patterns of physical optics are discontinous at dielectric interfaces, Part II and III of these three companion papers will be concerned with correction to the error of the physical optics approximation.

  • PDF