• Title/Summary/Keyword: Difficult ground

Search Result 785, Processing Time 0.038 seconds

LiDAR Ground Classification Enhancement Based on Weighted Gradient Kernel (가중 경사 커널 기반 LiDAR 미추출 지형 분류 개선)

  • Lee, Ho-Young;An, Seung-Man;Kim, Sung-Su;Sung, Hyo-Hyun;Kim, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.

Structural Analysis of Stone Pagoda Structure considering Soft Soil Ground Characteristics (연약지반 특성을 고려한 석탑구조물의 구조해석)

  • Kim, Ho-Ryong;Shin, Hyo-Bum;Park, Young-Sin;Kang, Myoung-Hee;Hong, Souk-Il;Kim, Ho-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.70-73
    • /
    • 2008
  • Because the inclination and crack of stone pagoda structure are caused by the depth difference of soft soil ground and ground subsidence in weak zone, a long-term conservation of stone pagoda structure is difficult. But it is insufficient to analyze the behavior of stone pagoda structure considering soft soil ground in our country. Therefore, we find the structural effect happening in stone pagoda structure by analyzing mechanically a specific of soft soil ground and carry out structural analysis and structural modelling of stone pagoda structure that considers soft soil ground by discrete element method.

  • PDF

Dynamic Characteristic of Coastal Reclaimed Land through Shaking Table Test (실내 진동대 실험을 통한 해안매립지반의 동적 특성 평가)

  • Shin, Eun-Chul;Kang, Hyoun-Hoi;Park, Jeong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.640-648
    • /
    • 2009
  • Recently the truction of coastal reclaimation work has been extensively implemented in Korea. The Sondo New City is being established on the reclaimed land from the sea, construction companies of metro construction are planing to pull-out the sheet pile for saving the construction cost. In the case of soft marine clay, it is very difficult to pull-out the sheet pile by using the hydraulic hammer difficult. Therefore, the man of the field must be aware of vibration effect to the ground and the structure. For understanding the vibration effect to the ground during subway construction, the model was formulated with 1/25 braced-cut for subway construction. Scott and Iai(1989) proposed the law of the similarity for other experimental conditions. The laboratory model test was conducted under the vibration condition of sheet pile pulling out. The settlement on the ground surface was measured during the shaking table test. The pore water pressure was also monitored in the upper, middle, and lower layers of soil. The field settlement level and the pore water pressure can be predicted by using the results of the laboratory shaking table test.

  • PDF

UNDERGROUND WATER PROBLEMS IN DEEP EXCAVATION CONSTRVCTION CONTROL AGAINST BOILING FAILURE IN DEEP EXCAVATION IN SANDY GROUND BY FIELD MONITORING

  • Iwasaki, Yoahinori
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1990.10a
    • /
    • pp.97-110
    • /
    • 1990
  • This paper presents a case history of a deep open cut excavation of Nakagawa section for Futuoka Subway construction which adopted observational mettled against boiling failure and completed with success by modifying construction based upon field monitoring. One of the difficult conditions for the excavation was sandy layer with high water pressure which was anticipated boiling failure. The boiling was generally considered as one of the difficult phenomena to work with the observational method because of its unpredictable catastrophic nature. Laboratory experiments showed the existence of the prefailure movements of the ground and the possibility of the application of the observational method against the boiling failure. Construction step was planned to be modified, if necessary, based upon field monitoring and was completed with success.

  • PDF

GEOTECHNICAL HAZARD REVIEW

  • Hencher, Steve
    • Proceedings of the KSEG Conference
    • /
    • 2000.04a
    • /
    • pp.3-18
    • /
    • 2000
  • Engineering projects often run into "difficult" ground donditions which cause delays, failures, hugely increased costs or even abandonment with consequent disputes and claims. Pertinent questions are "what constitute difficult conditions\ulcorner" and "how might they be foreseen\ulcorner" and these questions provide the focus for this paper. Geological, geotechnical and hydrogeological models for engineering projects(simplified representations of the ground) need to be developed in a systematic manner. Within these models, the potential hazards associated with material (small) and mass (large) scale attributes of the geology, the environmental setting and the influence of the engineering works themselves need to be considered individually and in a progressive, systematic manner. This paper introduces the concept of a Geotechnical Hazard Review with reference to examples from various engineering works.

  • PDF

A Study on High-Precision Digital Map Generation Using Ground LiDAR (지상 LiDAR를 이용한 고정밀 수치지도 생성에 관한 연구)

  • Choi, Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • The slope of the road in the forest area has a characteristic of steep slope, so natural disasters such as slope collapse occur. The slope displacement observation technique according to landslide is being studied as a method to observe a wide area and a method to observe a small area. This is a study on high-precision digital map generation using ground LiDAR. It is possible to create a high - precision digital map by minimizing the US side using the 3D LiDAR in the steep slope area where the GPS and Total Station measurement are difficult in the maintenance of the danger slope area. It is difficult to objectively evaluate whether the contour lines generated by LiDAR are correct and it is considered necessary to construct a test bed for this purpose. Based on this study, if terrain changes such as landslides occur in the future, it will be useful for measuring slope displacement.

Accuracy of Precision Ground Coordinates Determination Using Inverse RPC in KOMPSAT Satellite Data (다목적실용위성(KOMPSAT)의 Inverse RPC 해석을 통한 정밀지상좌표 결정 정확도)

  • Seo, DooChun;Jung, JaeHun;Hong, KiByung
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.99-107
    • /
    • 2014
  • There are two types of Physical Model and RFM (Rational Function Model) is to determinate ground coordinates using KOMPSAT-2 and KOMPSAT-3 satellite data. Generally, RPCs(Rational Polynomial Coefficients) based on RFM is provided for users. This RPCs is to compute the ground coordinates to the image coordinates. If users produce ortho-image with provided RPCs is useful, directly compute the ground coordinates corresponding to image coordinates and check location accuracy etc. are difficult. In this study, a basic algorithm of inverse RPCs that calculates the image coordinates to ground coordinates, compute based on provided RPCs and evaluation of determinated ground coordinates using developed inverse RPCs were proposed.

Influences of Power Fluctuation on In-Situ Ground Thermal Response Testing (지중 열반응 현장시험에서 소비전력 변동의 영향)

  • Kim, Jin-Sang;Park, Keun-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.707-712
    • /
    • 2006
  • Knowing the ground thermal conductivity is very importnat in designing ground heat exchangers. Knowledge of the ground soil and rock composition information dose not guarantee the prediction of accurate thermal information. In Situ testing of ground heat exchangers is becoming popular. However, in situ testing are performed at construction sites in real life. Adequate data collection and analysis are not easy mainly due to poor power quality. Power fluctuation also causes the fluctuation of received data. The power quality must be maintained during the entire in situ testing processes. To accurately analyse the test data, the understanding of the response of the power fluctuation is essential. Testing under the power quality varied by tester is very difficult. Analyzing power variation by numerical simulation is a realistic option. By varying power in a sinosuidal manner, its effects on predicting thermal conductivity from thermal response plots made from the test data are examined.

  • PDF

Localization with Two Optical Flow Sensors for Small Unmanned Ground Vehicles (두 개의 광류센서를 이용한 소형무인로봇의 위치 추정 기술)

  • Huh, Jinwook;Kang, Sincheon;Hyun, Dongjun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Localization is very important for the autonomous navigation of Unmanned Ground Vehicles; however, it is difficult that they have a precise Inertial Navigation System(INS) sensor, especially Small Unmanned Ground Vehicle(SUGV). Moreover, there are some condition such as denial of global position system(GPS), GPS/INS integrated system is not robust. This paper proposes the estimation algorithm with optical flow sensor and INS. Being compared with previous researches, the proposed algorithm is suitable for skid steering vehicles. We revised the measurement model of previous research for the accuracy of side direction position. Experimental results were performed to verify the algorithm, and the result showed an excellent performance.

Automatic Extraction of Gound-glass Opacities on Lung CT Images by Histogram Analysis

  • Maekado, Masaki;Kim, Hyoung-Seop;Ishikawa, Seiji;Tsukuda, Masaaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2352-2355
    • /
    • 2003
  • In recent yeas, studies on computer aided diagnosis (CAD) using image analysis on CT images have been conducted with respect to various diseases. Extracting ground-glass opacities (GGO) on lung CT images is one of such subjects, though it has not found an established method yet. If the region of ground-glass opacities is large on CT images, it can be detected without much difficulty. On the other hand, if the region is small, it is still difficult to find it exactly. In the latter case, increasing overlooking possibility cannot be avoided according to smaller size of the region. To solve this difficulty, this paper proposes an automatic technique for extracting ground-glass opacities on lung CT images employing some statistical parameters of a gray level histogram and a differential histogram. The proposed technique is applied to some lung CT images in the performed experiment. The results are shown with discussion on future work.

  • PDF