• 제목/요약/키워드: Differentiated stem cells

검색결과 215건 처리시간 0.024초

Forced Expression of HoxB4 Enhances Hematopoietic Differentiation by Human Embryonic Stem Cells

  • Lee, Gab Sang;Kim, Byung Soo;Sheih, Jae-hung;Moore, Malcolm AS
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.487-493
    • /
    • 2008
  • HoxB4 has been shown to enhance hematopoietic engraftment by hematopoietic stem cells (HSC) from differentiating mouse embryonic stem cell (mESC) cultures. Here we examined the effect of ectopic expression of HoxB4 in differentiated human embryonic stem cells (hESCs). Stable HoxB4-expressing hESCs were established by lentiviral transduction, and the forced expression of HoxB4 did not affect stem cell features. HoxB4-expressing hESC-derived CD34+ cells generated higher numbers of erythroid and blast-like colonies than controls. The number of CD34+ cells increased but CD45+ and KDR+ cell numbers were not significantly affected. When the hESC derived CD34+ cells were transplanted into $NOD/SCID{\beta}2m-/-$ mice, the ectopic expression of HoxB4 did not alter their repopulating capacity. Our findings show that overexpression of HoxB4 in differentiating hESCs increases hematopoietic colony formation and hematopoietic cell formation in vitro, but does not affect in vivo repopulation in adult mice hosts.

The Presence of Neural Stem Cells and Changes in Stem Cell-Like Activity With Age in Mouse Spiral Ganglion Cells In Vivo and In Vitro

  • Moon, Byoung-San;Ammothumkandy, Aswathy;Zhang, Naibo;Peng, Lei;Ibrayeva, Albina;Bay, Maxwell;Pratap, Athira;Park, Hong Ju;Bonaguidi, Michael Anthony;Lu, Wange
    • Clinical and Experimental Otorhinolaryngology
    • /
    • 제11권4호
    • /
    • pp.224-232
    • /
    • 2018
  • Objectives. Spiral ganglion neurons (SGNs) include potential endogenous progenitor populations for the regeneration of the peripheral auditory system. However, whether these populations are present in adult mice is largely unknown. We examined the presence and characteristics of SGN-neural stem cells (NSCs) in mice as a function of age. Methods. The expression of Nestin and Ki67 was examined in sequentially dissected cochlear modiolar tissues from mice of different ages (from postnatal day to 24 weeks) and the sphere-forming populations from the SGNs were isolated and differentiated into different cell types. Results. There were significant decreases in Nestin and Ki67 double-positive mitotic progenitor cells in vivo with increasing mouse age. The SGNs formed spheres exhibiting self-renewing activity and multipotent capacity, which were seen in NSCs and were capable of differentiating into neuron and glial cell types. The SGN spheres derived from mice at an early age (postnatal day or 2 weeks) contained more mitotic stem cells than those from mice at a late age. Conclusion. Our findings showed the presence of self-renewing and proliferative subtypes of SGN-NSCs which might serve as a promising source for the regeneration of auditory neurons even in adult mice.

Enhancement of In Vivo Bone Regeneration Efficacy of Human Mesenchymal Stem Cells

  • Kang, Sun-Woong;Lee, Jae-Sun;Park, Min Sun;Park, Jung-Ho;Kim, Byung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.975-982
    • /
    • 2008
  • We investigated whether transplantation of osteogenically differentiated bone marrow-derived mesenchymal stem cells (BMMSCs) and the use of an hydroxyapatite (HAp) scaffold can enhance the in vivo bone formation efficacy of human BMMSCs. Three months after implantation to the subcutaneous dorsum of athymic mice, transplantation of osteogenically differentiated human BMMSCs increased the bone formation area and calcium deposition to 7.1- and 6.2-folds, respectively, of those of transplantation of undifferentiated BMMSCs. The use of the HAp scaffold increased the bone formation area and calcium deposition to 3.7- and 3.5-folds, respectively, of those of a polymer scaffold. Moreover, a combination of transplantation of osteogenically differentiated BMMSCs and HAp scaffold further increased the bone formation area and calcium deposition to 10.6- and 9.3-folds, respectively, of those of transplantation of undifferentiated BMMSCs seeded onto polymer scaffolds. The factorial experimental analysis showed that osteogenic differentiation of BMMSCs prior to transplantation has a stronger positive effect than the HAp scaffold on in vivo bone formation.

시험관내 배양된 제대혈 모세포에서의 신경항원 발현 (Neural Antigen Expressions in Cultured Human Umbilical Cord Blood Stem Cells in vitro)

  • 하윤;윤도흠;연동수;김현옥;이진주;조용은;최중언
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권8호
    • /
    • pp.963-969
    • /
    • 2001
  • Objectives : Cord blood stem cells have been widely used as donor cells for bone marrow transplantation recently. These cells can give rise to a variety of hematopoietic lineages to repopulate the blood. Recent observations reveal that some bone marrow cells and bone marrow stromal cells(MSCs) can grow to become either neurons or glial cells. It is, however, unclear whether or not there exists stems cells which can differentiate into neurons in the blood during the early stages of postnatal life. Methods : Human cord blood stem cells were prepared from human placenta after full term delivery. To induce neuronal differentiation of stem cells, ${\beta}$-mercaptoethanol was treated. To confirm the neuro-glial characteristics of differentiated stem cells, immunocytochemical stain for NeuN, neurofilament, glial fibrillary acidic protein(GFAP), microtubule associated protein2(MAP2) was performed. RT-PCR was performed for detecting nestin mRNA and MAP2 mRNA. Results : We showed in this experiment that neuro-glial markers(NeuN, neurofilament, MAP2, GFAP) were expressed and axon-like cytoplasmic processes are elaborated in the cultured human cord blood stem cells prepared from new born placenta after full term delivery. Nestin mRNA was also detected in fresh cord blood monocytes. Conclusions : These results suggest that human cord blood derived stem cells may be potential sources of neurons in early postnatal life.

  • PDF

Neurogenic potentials of human amniotic fluid-derived stem cells according to expression levels of stem cell markers and ingredients of induction medium

  • Lim, Eun Hye;Cho, Jung Ah;Park, Ho;Song, Tae Jong;Kim, Woo Young;Kim, Kye Hyun;Lee, Kyo Won
    • Journal of Genetic Medicine
    • /
    • 제12권1호
    • /
    • pp.31-37
    • /
    • 2015
  • Purpose: We investigated the neurogenic potentials of amniotic fluid-derived stem cells (AFSCs) according to the expression levels of stem cell markers and ingredients in the neural induction media. Materials and Methods: Four samples of AFSCs with different levels of Oct-4 and c-kit expression were differentiated neurally, using three kinds of induction media containing retinoic acid (RA) and/or a mixture of 3-isobutyl-1-methylxanthine/indomethacin/insulin (neuromix), and examined by immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR) for their expression of neurospecific markers. Results: The cells in neuromix-containing media displayed small nuclei and long processes that were characteristic of neural cells. RT-PCR analysis revealed that the number of neural markers showing upregulation was greater in cells cultured in the neuromix-containing media than in those cultured in RA-only medium. Neurospecific gene expression was also higher in Oct-4 and c-kit double-positive cells than in c-kit-low or -negative cells. Conclusion: The stem cell marker c-kit (rather than Oct-4) and the ingredient neuromix (rather than RA) exert greater effects on neurogenesis of AFSCs.

Glutathione is the Major Defensive Mechanism against Oxidative Stress in Human Embryonic Stem Cell

  • 이건섭;이영재;김은영;박세필;임진호
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.78-78
    • /
    • 2003
  • Embryonic stem (ES) cells, derived from preimplantation embryo, are able to differentiate into various types of cells consisting the whole body, or pluripotency. In contrast, terminally differentiated cells do not usually alter their nature but frequently die or transform if they are exposed to inappropriate external stimulations. In addition to the plasticity, ES cells are expected to be different from terminally differentiated cells in very many ways, such as patterns of gene expressions, ability and response of the cells in confronting environmental stimulations, metabolism, and growth rate. As a model system to differentiate these two types of cells, human ES cells (MB03) and terminally differentiated cells (HeLa), we examined the ability of these two types of cells in confronting a severe oxidative insult, that is $H_2O$$_2$. Approximately 1$\times$10$^4$ cells were plated in 96 well plate and serum starved for overnight. The conditioned cells were exposed to a various concentration of $H_2O$$_2$ fur 24 hrs and loaded with neutral red (50$\mu\textrm{g}$/ml) for 4 hrs, washed with PBS for 2 min three times, and entrapped dye was dissolved out using acetic ethanol. Cytotoxicity was determined by reading the amount of dye in the medium using microplate reader. equipped with 575 nm filter. Relative amount of the dye entrapped within MB03 or HeLa were not significantly different when cells were exposed up to 0.4 mM $H_2O$$_2$. However, this sharply decreased down to 0.12% in HeLa cells when the cells were exposed to 0.8 mM $H_2O$$_2$, while it was approximately 54% in MB03 suggesting that this concentration of $H_2O$$_2$ is the defensive threshold for HeLa cells. The resistance to oxidative stimulation reversed, however, when cells were co-treated with BSO (L-buthionine- 〔S, R〕-sulfoximine) which chelates intracellular GSH. This result suggests that cellular GSH is the major defensive mechanism of human ES cells. Induction of enzymes involved in GSH metabolism and type of cell death is currently being studied.

  • PDF

Therapeutic Use of Stem Cell Transplantation for Cell Replacement or Cytoprotective Effect of Microvesicle Released from Mesenchymal Stem Cell

  • Choi, Moonhwan;Ban, Taehyun;Rhim, Taiyoun
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.133-139
    • /
    • 2014
  • Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of idiopathic interstitial pneumonias (IIP), and which is currently no method was developed to restore normal structure and function. There are several reports on therapeutic effects of adult stem cell transplantations in animal models of pulmonary fibrosis. However, little is known about how mesenchymal stem cell (MSC) can repair the IPF. In this study, we try to provide the evidence to show that transplanted mesenchymal stem cells directly replace fibrosis with normal lung cells using IPF model mice. As results, transplanted MSC successfully integrated and differentiated into type II lung cell which express surfactant protein. In the other hand, we examine the therapeutic effects of microvesicle treatment, which were released from mesenchymal stem cells. Though the therapeutic effects of MV treatment is less than that of MSC treatment, MV treat-ment meaningfully reduced the symptom of IPF, such as collagen deposition and inflammation. These data suggest that stem cell transplantation may be an effective strategy for the treatment of pulmonary fibrosis via replacement and cytoprotective effect of microvesicle released from MSCs.

치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구 (A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast)

  • 이중규;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권1호
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

Kinetic Properties of Extracted Lactate Dehydrogenase and Creatine Kinase from Mouse Embryonic Stem Cell- and Neonatal-derived Cardiomyocytes

  • Zonouzi, Roseata;Ashtiani, Saeid Kazemi;Hosseinkhani, Saman;Baharvand, Hossein
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.426-431
    • /
    • 2006
  • Embryonic stem cells (ESCs), representing a population of undifferentiated pluripotent cells with both self-renewal and multilineage differentiation characteristics, are capable of spontaneous differentiation into cardiomyocytes. The present study sought to define the kinetic characterization of lactate dehydrogenase (LDH) and creatine kinase (CK) of ESC- and neonatal-derived cardiomyocytes. Spontaneously differentiated cardiomyocytes from embryoid bodies (EBs) derived from mouse ESC line (Royan B1) and neonatal cardiomyocytes were dispersed in a buffer solution. Enzymes were extracted by sonication and centrifugation for kinetic evaluation of LDH and CK with spectrophotometric methods. While a comparison between the kinetic properties of the LDH and CK of both groups revealed not only different Michaelis constants and optimum temperatures for LDH but also different Michaelis constants and optimum pH for CK, the pH profile of LDH and optimum temperature of CK were similar. In defining some kinetic properties of cardiac metabolic enzymes of ESC-derived cardiomyocytes, our results are expected to further facilitate the use of ESCs as an experimental model.

SIRT1 Knockdown Enhances the Differentiation of Human Embryonic Stem Cells into Pancreatic β Cells

  • Seo, Nan-Hee;Song, Hwa-Ryung;Han, Myung-Kwan
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권4호
    • /
    • pp.391-399
    • /
    • 2019
  • Nicotinamide is used to maturate pancreatic progenitors from embryonic stem cells (ESCs) into insulin-producing cells (IPCs). It has been known that nicotinamide inhibits the enzymatic activity of SIRT1, an NAD+-dependent deacetylase. Here we show that SIRT1 knockdown enhances the differentiation of human ESCs into IPCs. SIRT1 knockdown enhances the clustering size of IPCs and the expression of pancreatic genes including c-peptide, pancreas/duodenum homeobox protein 1 (PDX1), insulin, somatostatin, glucagon and Nkx6.1 in human ESC-derived IPCs. In addition, We found that IPCs differentiated from SIRT1 knockdowned human ESCs have more zinc compared to those from control human ESCs. Our data suggest that SIRT1 negatively regulates the differentiation of β cells from human ESCs.