• Title/Summary/Keyword: Differentially Expression genes

Search Result 576, Processing Time 0.023 seconds

Differences in liver microRNA profiling in pigs with low and high feed efficiency

  • Miao, Yuanxin;Fu, Chuanke;Liao, Mingxing;Fang, Fang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.312-329
    • /
    • 2022
  • Feed cost is the main factor affecting the economic benefits of pig industry. Improving the feed efficiency (FE) can reduce the feed cost and improve the economic benefits of pig breeding enterprises. Liver is a complex metabolic organ which affects the distribution of nutrients and regulates the efficiency of energy conversion from nutrients to muscle or fat, thereby affecting feed efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed efficiency through the modulation of gene expression at the post-transcriptional level. In this study, we analyzed miRNA profiling of liver tissues in High-FE and Low-FE pigs for the purpose of identifying key miRNAs related to feed efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs indicated that the target genes of DE miRNAs were significantly enriched in insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and mammalian target of rapamycin signaling pathway. To verify the reliability of sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs were confirmed to be consistent with sequencing data. DE miRNA data indicated that liver-specific miRNAs synergistically acted with mRNAs to improve feed efficiency. The liver miRNAs expression analysis revealed the metabolic pathways by which the liver miRNAs regulate pig feed efficiency.

Prognostic biomarkers and molecular pathways mediating Helicobacter pylori-induced gastric cancer: a network-biology approach

  • Farideh Kamarehei;Massoud Saidijam;Amir Taherkhani
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.8.1-8.19
    • /
    • 2023
  • Cancer of the stomach is the second most frequent cancer-related death worldwide. The survival rate of patients with gastric cancer (GC) remains fragile. There is a requirement to discover biomarkers for prognosis approaches. Helicobacter pylori in the stomach is closely associated with the progression of GC. We identified the genes associated with poor/favorable prognosis in H. pylori-induced GC. Multivariate statistical analysis was applied on the Gene Expression Omnibus (GEO) dataset GSE54397 to identify differentially expressed miRNAs (DEMs) in gastric tissues with H. pylori-induced cancer compared with the H. pylori-positive with non-cancerous tissue. A protein interaction map (PIM) was built and subjected to DEMs targets. The enriched pathways and biological processes within the PIM were identified based on substantial clusters. Thereafter, the most critical genes in the PIM were illustrated, and their prognostic impact in GC was investigated. Considering p-value less than 0.01 and |Log2 fold change| as >1, five microRNAs demonstrated significant changes among the two groups. Gene functional analysis revealed that the ubiquitination system, neddylation pathway, and ciliary process are primarily involved in H. pylori-induced GC. Survival analysis illustrated that the overexpression of DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, and TXNIP was associated with poor prognosis, while increased MRPS5 expression was related to a favorable prognosis in GC patients. DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, TXNIP, and MRPS5 may be considered prognostic biomarkers for H. pylori-induced GC. However, experimental validation is necessary in the future.

Analysis of Differentially Expressed Genes by Allicin in Human Colorectal Cancer Cell (마늘성분 Allicin에 의해 차별적으로 발현되는 유전자군의 발현 분석)

  • Kim, Kyung-Ho;Kim, Min-Jung;Kim, Jong-Sik;Pyo, Suhk-Neung;Kim, Byung-Oh
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.442-447
    • /
    • 2010
  • We investigated anti-cancer and anti-proliferative activity of allicin and analyzed global gene expression changes by allicin treatment in human colorectal HCT116 cells. As a result, allicin decreased cell viabilities in a dose and time-dependent manner and induced apoptosis. Oligo DNA microarray analysis, we found that 7,840 genes were up-regulated more than 2-folds, whereas 10,010 genes were down-regulated more than 2-folds by $50\;{\mu}M$ allicin treatment. To confirm specific gene expressions, we performed RT-PCR. Consistent with the results of DNA microarray analysis, allicin dramatically induced ATF3 and NAG1 gene expression. Interestingly, NAG-1 protein expression was dependent on p53 presence. Taken together, our present results increase the knowledge of the molecular mechanism of anti-cancer and anti-proliferative activity mediated by allciin in human colorectal cancer cell.

Immature Oocyte-Specific Zap70 and Its Functional Analysis in Regulating Oocyte Maturation

  • Kim, Yun-Na;Kim, Eun-Ju;Kim, Eun-Young;Lee, Hyun-Seo;Kim, Kyeoung-Hwa;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.145-153
    • /
    • 2009
  • Previously, we obtained the list of genes differentially expressed between GV and MII oocytes. Out of the list, we focused on functional analysis of Zap70 in the present study, because it has been known to be expressed only in immune cells. This is the first report about the expression and its function of Zap70 in the oocytes. Synthetic 475 bp Zap70 dsRNA was microinjected into the GV oocytes, and the oocytes were cultured in vitro. In addition to maturation rates, meiotic spindle and chromosome rearrangements, and changes in expression levels of transcripts of three kinases, Erk1/2, JNK, and p38, were determined. Zap70 is highly expressed in immature GV oocytes, and gradually decreased as oocyte matured. When dsRNA of Zap70 was injected into the GV oocytes, Zap70 mRNA specifically and completely decreased by 2 hr and its protein expression also decreased significantly. Absence of Zap70 resulted in maturation inhibition at meiosis I (57%) with abnormalities in meiotic spindle formation and chromosome rearrangement. Concurrently, mRNA expression of Erk2, JNK, and p38, were affected by Zap70 RNAi. Therefore, we concluded that Zap70 is involved in MI-MII transition by affecting expression of MAP kinases.

  • PDF

Transcriptomic Analysis of the Difference of Bovine Satellite Cell Between Longissimus dorsi and Semimembranosus on Hanwoo Muscle Tissues (한우의 등심과 사태조직 유래 근육위성세포의 성장단계별 유전발현 차이 분석)

  • Kim, H.J.;Kang, D.H.;Park, B.H.;Lee, W.Y.;Choi, J.H.;Chung, K.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.117-128
    • /
    • 2021
  • The skeletal muscle development of Hanwoo steer has been processed in the prenatal and postnatal periods. Bovine satellite cell located in perimysium of muscle tissues has differentially distributed in peripheral tissues. The study of postnatal development of satellite cells can help understand the genetic and functional regulation of meat characteristics. Factors affecting muscle size increase are related to the accumulation of DNA or synthesis of RNA proteins. In this study, we observed muscle development and differentiation after culturing bovine satellite cells derived from longissimus dorsi and semimembranosus regions of Hanwoo muscle tissue. In addition, RNA sequencing data were analyzed for differentially expressed genes (DEG) involved in intracellular muscle development and growth. The DEG of the two muscle tissues were compared according to 1day, 2day, 4day, and 7day. The overall gene expression level was confirmed by the heat map. Gene Ontology (GO) classification method was used to compare the expression level of gene groups affecting LD and SM development. The histology of GO was consistent with the time-cause change of LD and SM cell morphology. SM showed more active skeletal muscle development than LD. Even within the same time, SM expressed more genes than LD, thus synthesizing more muscle fibers

Analysis of Differentially Expressed Genes by Sulindac Sulfide in Human Colorectal Cells (인간 대장암 세포주에서 sulindac sulfide 처리에 의해 차별적으로 발현되는 유전자 군의 분석)

  • Shin, Seung-Hwa;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.996-1001
    • /
    • 2007
  • To investigate whether sulindac, sulindac sulfone, and sulindac sulfide could affect cancer cell viabilities, human colorectal HCTl16 cells were treated with 10 ${\mu}M$ of each NSAID. Among treated NSAms, sulindac sulfide dramatically decreased the cell viabilities detected by MTS and the cytotoxic effect showed dose-dependent manner. To understand the molecular mechanism of cell death in response to sulindac sulfide treatment, we performed oligo DNA microarray analysis. We found that 23 genes were up-regulated more than 2 folds, whereas 33 genes were down-regulated more than 2 folds by treatment of 10 ${\mu}M$ sulindac sulfide. Among the up-regulated genes, we selected 3 genes (NAG-1, DDIT3, PCK2) and performed RT-PCR and quantitative real-time PCR to cofirm microarray data. The results of RT-PCR and real-time PCR were highly accorded with those of microarray experiment. As NAG-1 is well-known gene as tumor suppressor, we detected changes of NAG-1 expression by 10 ${\mu}M$ of sulindac, sulindac sulfone, and sulindac sulfide. The results of RT-PCR and quantitacve real-time PCR indicated that sulindac sulfide was the strongest inducer of NAG-1 among treated NSAIDS. This result implies that induction of NAG-1 by sulindac sulfide plays important role in cell death of colorectal cancer. Overall, we speculate that these results may be helpful in understanding the molecular mechanism of the cancer chemoprevention by sulindac sulfide in human colorectal cancer.

Effect of Cyclooxygenase-2 Specific Inhibitor (SC-58635) on the Production of Nitric Oxide and Prostaglandin E2 in Lipopolysaccharide-stimulated Macrophage Cells (Cyclooxygenase-2 Specific Inhibitor (SC-58635)가 Lipopolysaccharide로 자극한 대식세포에서 Nitric Oxide와 Prostaglandin E2 생산에 미치는 영향)

  • Hong, Seung-Jae;Yang, Hyung-In;Yoon, Hwi-Joong;Lee, Myoung-Soo;Kang, Hyo-Jong;Kim, Wan-Uk;Lee, Sang-Heon;Cho, Chul-Soo;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • Background: Celecoxib, a COX-2 specific inhibitor, has recently been used for the treatment of rheumatoid arthritis. However, the molecular and cellular mechanisms of celecoxib against RA inflammation remain to be defined. To elucidate the action mechanism of celecoxib on inflammatory cells, we investigated the effect of celecoxib on the production of two important mediators of inflammation, nitric oxide and PGE2 Methods: RAW 264.7 cells stimulated with LPS were preincubated with various concentrations of celecoxib (from $10^{-8}$ to $10^{-5}$ M) and $10{\mu}M$ hydrocortisone, respectively. The production of NO and PGE2, the end products of iNOS and COX-2 genes, were estimated in culture supernatants by Greiss method and EIA, respectively. The expression of iNOS gene, COX-2 gene, $NF-{\kappa}B$, and $I-{\kappa}B$ were determined by RT-PCR and western blot analysis. Results: Celecoxib and hydrocortisone inhibited the production of NO and PGE2 in dose dependent manner, when RAW 264.7 cells were stimulated with LPS. The expression of iNOS was also down-regulated by celecoxib and hydrocortisone. Interestingly, COX-2 gene differentially expressed according to the dose of celecoxib, a decrease with lower dose ($10^{-8}$ M) but an increase with higher dose ($10^{-5}$ M). $NF-{\kappa}B$ binding activity was decreased by lower dose of celecoxib, whereas was not affected by higher dose of it. The expression of $I-{\kappa}B$ was suppressed by higher dose of celecoxib. Conclusion: The celecoxib strongly suppressed the production of NO and PGE2 in LPS-stimulated RAW264.7 cells. The decrease of NO seems to be linked to the inhibition of iNOS by celecoxib. The lower and higher dose of celecoxib differentially regulated the COX-2 expression and $NF-{\kappa}B$ activity.

Cyclosporin A-induced Gingival Overgrowth is Closely Associated with Regulation Collagen Synthesis by the Beta Subunit of Prolyl 4-hydroxylase and Collagen Degradation by Testican 1-mediated Matrix Metalloproteinase-2 Expression

  • Park, Seong-Hee;Kim, Jae-Yoen;Kim, Hyun-Jeong;Park, Kwang-Kyun;Cho, Kyoo-Sung;Choi, Seong-Ho;Chung, Won-Yoon
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.205-211
    • /
    • 2008
  • Gingival overgrowth can cause dental occlusion and seriously interfere with mastication, speech, and dental hygiene. It is observed in 25 to 81% of renal transplant patients treated with cyclosporine A (CsA). CsA-induced gingival overgrowth (CIGO) is caused by quantitative alteration of the extracellular matrix components, particularly collagen. However, the molecular mechanisms involved in the pathogenesis of CIGO remain poorly understood, despite intense clinical and laboratory investigations. The aim of the present work is to identify differentially expressed genes closely associated with CIGO. Human gingival fibroblasts were isolated by primary explant culture of gingival tissues from five healthy subjects (HGFs) and two patients with the CIGO (CIGO-HGFs). The proliferative activity of CsA-treated HGFs and CIGO-HGFs was examined using the MTT assay. The identification of differentially expressed genes in CsA-treated CIGO-HGF was performed by differential display reverse transcriptase-polymerase chain reaction (RT-PCR) followed by DNA sequencing. CsA significantly increased the proliferation of two HGFs and two CIGO-HGFs, whereas three HGFs were not affected. Seven genes, including the beta subunit of prolyl 4-hydroxylase (P4HB) and testican 1, were upregulated by CsA in a highly proliferative CIGO-HGF. The increased P4HB and testican-1 mRNA levels were confirmed in CsA-treated CIGO-HGFs by semiquantitative RT-PCR. Furthermore, CsA increased type I collagen mRNA levels and suppressed MMP-2 mRNA levels, which are regulated by P4HB and testican-1, respectively. These results suggest that CsA may induce gingival overgrowth through the upregulation of P4HB and testican-1, resulting in the accumulation of extracellular matrix components.

Transcriptome sequencing reveals non-coding RNAs respond to porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in Kele piglets

  • Jing Zhang;Chunping Zhao;Min Yao;Jing Qi;Ya Tan;Kaizhi Shi;Jing Wang;Sixuan Zhou;Zhixin Li
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.663-681
    • /
    • 2024
  • Co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and Haemophilus parasuis (HPS) has severely restricted the healthy development of pig breeding. Exploring disease resistance of non-coding RNAs in pigs co-infected with PRRSV and HPS is therefore critical to complement and elucidate the molecular mechanisms of disease resistance in Kele piglets and to innovate the use of local pig germplasm resources in China. RNA-seq of lungs from Kele piglets with single-infection of PRRSV or HPS and co-infection of both pathogens was performed. Two hundred and twenty-five differentially expressed long non-coding RNAs (DElncRNAs) and 30 DEmicroRNAs (DEmiRNAs) were identified and characterized in the PRRSV and HPS co-infection (PRRSV-HPS) group. Compared with the single-infection groups, 146 unique DElncRNAs, 17 unique DEmiRNAs, and 206 target differentially expressed genes (DEGs) were identified in the PRRSV-HPS group. The expression patterns of 20 DEmiRNAs and DElncRNAs confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) were consistent with those determined by high-throughput sequencing. In the PRRSV-HPS group, the target DEGs were enriched in eight immune Gene Ontology terms relating to two unique DEmiRNAs and 16 DElncRNAs, and the unique target DEGs participated the host immune response to pathogens infection by affecting 15 immune-related Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Notably, competitive endogenous RNA (ceRNA) networks of different groups were constructed, and the ssc-miR-671-5p miRNA was validated as a potential regulatory factor to regulate DTX4 and AEBP1 genes to achieve innate antiviral effects and inhibit pulmonary fibrosis by dual-luciferase reporter assays. These results provided insight into further study on the molecular mechanisms of resistance to PRRSV and HPS co-infection in Kele piglets.

Differential Expression of C4H and F5H Genes in Rice (Oryza sativa L.) after Gamma-irradiation

  • Park, Young-Mi;Chae, Hyo-Seok;Chung, Byung-Yeoup;Kim, Jae-Sung;Kim, Jin-Hong;Wi, Seung-Gon;An, Byung-Chull;Cho, Jae-Young
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.155-159
    • /
    • 2006
  • To reveal effects of gamma-irradiation with various doses on the expressions of C4H and F5H genes, the transcription levels of OsC4HL and OsF5HL were investigated in leaves and stems of two rice cultivars, Ilpoombyeo and IR-29, after the irradiation with 5, 10, 50, or 100 Gy for 4 h. In overall pattern of 24 h after the irradiation, the transcription levels of the two genes increased with the increasing doses of radiation in the leaves of both cultivars, except that of OsC4HL in IR-29. However, in the stems, the transcription level of OsF5HL increased in Ilpoombyeo and decreased in IR-29 dose-dependently, while that of OsC4HL decreased in Ilpoombyeo with the increasing doses of radiation and remained constant in IR-29. When the expressions of OsC4HL and OsF5HL were investigated in a time-course after the irradiation with 100 Gy, they reached their highest levels in the leaves of both cultivars 5 hand 72 h after the irradiation, respectively. Therefore, we suggest that the expressions of OsC4HL and OsF5HL, which involved in the same phenylpropanoid pathway, are differentially regulated during the post-irradiation period, showing different cultivar and tissue specificity. Furthermore, the dose dependency of the gene expressions is also discussed immediately after the irradiation.