Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.7.996

Analysis of Differentially Expressed Genes by Sulindac Sulfide in Human Colorectal Cells  

Shin, Seung-Hwa (Dept. of Biological Sciences, Andong National University)
Kim, Jong-Sik (Dept. of Biological Sciences, Andong National University)
Publication Information
Journal of Life Science / v.17, no.7, 2007 , pp. 996-1001 More about this Journal
Abstract
To investigate whether sulindac, sulindac sulfone, and sulindac sulfide could affect cancer cell viabilities, human colorectal HCTl16 cells were treated with 10 ${\mu}M$ of each NSAID. Among treated NSAms, sulindac sulfide dramatically decreased the cell viabilities detected by MTS and the cytotoxic effect showed dose-dependent manner. To understand the molecular mechanism of cell death in response to sulindac sulfide treatment, we performed oligo DNA microarray analysis. We found that 23 genes were up-regulated more than 2 folds, whereas 33 genes were down-regulated more than 2 folds by treatment of 10 ${\mu}M$ sulindac sulfide. Among the up-regulated genes, we selected 3 genes (NAG-1, DDIT3, PCK2) and performed RT-PCR and quantitative real-time PCR to cofirm microarray data. The results of RT-PCR and real-time PCR were highly accorded with those of microarray experiment. As NAG-1 is well-known gene as tumor suppressor, we detected changes of NAG-1 expression by 10 ${\mu}M$ of sulindac, sulindac sulfone, and sulindac sulfide. The results of RT-PCR and quantitacve real-time PCR indicated that sulindac sulfide was the strongest inducer of NAG-1 among treated NSAIDS. This result implies that induction of NAG-1 by sulindac sulfide plays important role in cell death of colorectal cancer. Overall, we speculate that these results may be helpful in understanding the molecular mechanism of the cancer chemoprevention by sulindac sulfide in human colorectal cancer.
Keywords
Colorectal cancer; chemoprevention; NSAID; DNA microarray; gene expression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lamprecht, S. A. and M. Lipkin. 2003. Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat. Rev. Cancer. 3, 601-613.   DOI   ScienceOn
2 Sung, J. J., J. Y. Lau, K. L. Goh and W. K. Leung. 2005. Increasing incidence of colorectal cancer in Asia: implications for screening. Lancet Oncol. 6, 871-876.   DOI   ScienceOn
3 Woo, K. J., T. J. Lee, S. H. Lee, J. M. Lee, J. H. Seo, Y. J. Jeong, J. W. Park and T. K. Kwon, 2007. Elevated gadd153/chop expression during resveratrol-induced apoptosis in human colon cancer cells. Biochem. Pharmacol. 73, 68-76.   DOI   ScienceOn
4 Wilson, L. C., S. J. Baek, A. Call and T. E. Eling. 2003. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753.   DOI   ScienceOn
5 Ricchi, P., R. Zarrilli, A. di Palma and A. M. Acquaviva. 2003. Non-steroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br. J. Cancer 88, 803-807.   DOI   ScienceOn
6 Richter, M., M. Weiss, I. Weinberger, G. Furstenberger and B. Malian. 2001. Growth inhibition and induction of apoptosis in colorectal tumor cells by cyclooxygenase inhibitors. Carcinogenesis 22, 17-25.   DOI   ScienceOn
7 Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3, 768-780.   DOI   ScienceOn
8 Thompson, H. J., C. Jiang, J. Lu, R. G. Mehta, G. A. Piazza, N. S. Paranka, R. Pamukcu and D. J. Ahnen, 1997. Sulfone metabolite of sulindac inhibits mammary carcinogenesis. Cancer Res. 57, 267-271
9 Williams, C. S., A. P. Goldman, H. Sheng, J. D. Morrow and R. N. DuBois, 1999. Sulindac sulfide, but not sulindac sulfone, inhibits colurectal cancer growth. Neoplasia 1, 170-176.   DOI   ScienceOn
10 Giovannucci, E., E. B. Rimm, M. J. Stampfer, G. A. Colditz, A. Ascherio and W. C. Willett. 1994. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann. Intern. Med. 121, 241-246.   DOI   ScienceOn
11 Greenlee, R. T., T. Murray, S. Bolden and P. A. Wingo. 2000. Cancer statistics, 2000. CA Cancer J. Clin. 50, 7-33.   DOI   ScienceOn
12 Lee, S. H., K. Yamaguchi, J. S. Kim, T. E. Eling, S. Safe, Y. Park and S. J. Baek. 2006. Conjugated linoleic acid stimulates an anti-tumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis 27, 972-981.   DOI   ScienceOn
13 Harris, R. E., J. Beebe-Donk and G. A. Alshafie. 2007. Reduced risk of human lung cancer by selective cyclooxygenase 2 (COX-2) blockade: results of a case control study. Int. J. Biol. Sci. 3, 328-334.
14 Hong, W. K. and M. B. Sporn. 1997. Recent advances in chemoprevention of cancer. Science 278, 1073-1077.   DOI   ScienceOn
15 Jarvis, M. C, T. J. Gray and C. N. Palmer. 2005. Both PP ARgamma and PP ARdelta influence sulindac sulfide-mediated p21WAF/CIP1 upregulation in a human prostate epithelial cell line. Oncogene 24, 8211-8215.   DOI
16 Liu, X., S. J. Plummer, N. L. Nock, G. Casey and J. S. Witte. 2006. Nonsteroidal antiinflmmatory drugs and decreased risk of advanced prostate cancer: modification by lymphotoxin alpha. Am. J. Epidemiol. 164, 984-989.   DOI   ScienceOn
17 Matsumoto, M., M. Minami, K. Takeda, Y. Sakao and S. Akira. 1996. Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett. 395, 143-147.   DOI   ScienceOn
18 Parkin, D. M., S. L. Whelan, J. Ferlay, L. Teppo and D. B. Tomas. 2003. Cancer incidence in five continents. Vol 8. Lyon, France. International Agency for Research on Cancer.
19 Rahme, E., J. Ghosn, K. Dasgupta, R. Rajan and M. Hudson. 2005. Association between frequent use of nonsteroidal anti-inflammatory drugs and breast cancer. BMC Cancer 5, 159.   DOI
20 Baek, S. J., J. S. Kim, S. M. Moore, S. H. Lee, J. Martinez and T. E. Eling. 2005. Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-1, an antitumorigenic protein. Mol. Pharmacol. 67, 356-364.   DOI   ScienceOn
21 Baek, S. J., R. Okazaki, S. H. Lee, J. Martinez, J. S. Kim, K. Yamaguchi, Y. Mishina, D. W. Martin, A. Shoieb, M. F. McEntee and T. E. Eling. 2006. Nonsteroidal anti-inflmmatory drug-activated gene-lover expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 131, 1553-1560.   DOI   ScienceOn
22 Barnes, A. P., B. E. MilIer and G. L. Kucera. 2007. Cyclooxygenase inhibition and hyperthermia for the potentiation of the cytotoxic response in ovarian cancer cells. Gynecol. Oncol. 104, 443-450.   DOI   ScienceOn
23 Barone, M. V., A. Crozat, A. Tabaee, L. Philipson and D. Ron. 1994. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 8, 453 - 464.   DOI   ScienceOn