연합 학습(FL)은 여러 공동 작업자 간에 분산된 모델 학습을 위한 강력한 방법론으로 부상해 데이터 공유의 필요성을 없애준다. FL은 데이터 프라이버시를 보호하는 기능으로 호평을 받고 있지만, 다양한 유형의 프라이버시 공격으로부터 자유롭지 않다. 대표적인 개인정보 보호 기술인 차분 프라이버시(DP)는 이러한 취약점에 대응하기 위해 널리 사용된다. 이 논문에서는 기존의 작업별 적응형 DP 메커니즘을 FL 환경에 적용해 성능을 평가한다. 포괄적인 분석을 통해 다양한 DP 메커니즘이 공유 글로벌 모델의 성능에 미치는 영향을 평가하며, 특히 다양한 데이터 배포 및 분할 스키마에 주의를 기울인다. 이를 통해, FL에서 개인정보 보호와 유용성 간의 복잡한 상호 작용에 대한 이해를 심화하고, 성능 저하 없이 데이터를 보호할 수 있는 검증된 방법론을 제공한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3497-3515
/
2018
Differential privacy has broadly applied to statistical analysis, and its mainly objective is to ensure the tradeoff between the utility of noise data and the privacy preserving of individual's sensitive information. However, an individual could not achieve expected data utility under differential privacy mechanisms, since the adding noise is random. To this end, we proposed an adaptive Gaussian mechanism based on expected data utility under conditional filtering noise. Firstly, this paper made conditional filtering for Gaussian mechanism noise. Secondly, we defined the expected data utility according to the absolute value of relative error. Finally, we presented an adaptive Gaussian mechanism by combining expected data utility with conditional filtering noise. Through comparative analysis, the adaptive Gaussian mechanism satisfies differential privacy and achieves expected data utility for giving any privacy budget. Furthermore, our scheme is easy extend to engineering implementation.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권10호
/
pp.5244-5259
/
2019
With the continuous development of LBS (Location Based Service) applications, privacy protection has become an urgent problem to be solved. Differential privacy technology is based on strict mathematical theory that provides strong privacy guarantees where it supposes that the attacker has the worst-case background knowledge and that knowledge has been applied to different research directions such as data query, release, and mining. The difficulty of this research is how to ensure data availability while protecting privacy. Spatial multidimensional data are usually released by partitioning the domain into disjointed subsets, then generating a hierarchical index. The traditional data-dependent partition methods need to allocate a part of the privacy budgets for the partitioning process and split the budget among all the steps, which is inefficient. To address such issues, a novel two-step partition algorithm is proposed. First, we partition the original dataset into fixed grids, inject noise and synthesize a dataset according to the noisy count. Second, we perform IH-Tree (Improved H-Tree) partition on the synthetic dataset and use the resulting partition keys to split the original dataset. The algorithm can save the privacy budget allocated to the partitioning process and obtain a more accurate release. The algorithm has been tested on three real-world datasets and compares the accuracy with the state-of-the-art algorithms. The experimental results show that the relative errors of the range query are considerably reduced, especially on the large scale dataset.
Today, with the development of the internet of things, wearable devices related to personal health care have become widespread. Various global information and communication technology companies are developing various wearable health devices, which can collect personal health information such as heart rate, steps, and calories, using sensors built into the device. However, since individual health data includes sensitive information, the collection of irrelevant health data can lead to personal privacy issue. Therefore, there is a growing need to develop technology for collecting sensitive health data from wearable health devices, while preserving privacy. In recent years, local differential privacy (LDP), which enables sensitive data collection while preserving privacy, has attracted much attention. In this paper, we develop a technology for collecting vast amount of health data from a smartwatch device, which is one of popular wearable health devices, using local difference privacy. Experiment results with real data show that the proposed method is able to effectively collect sensitive health data from smartwatch users, while preserving privacy.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권8호
/
pp.3852-3864
/
2016
Patients' health data is very sensitive and the access to individual's health data should be strictly restricted. However, many data consumers may need to use the aggregated health data. For example, the insurance companies needs to use this data to setup the premium level for health insurances. Therefore, privacy-preserving data aggregation solutions for health data have both theoretical importance and application potentials. In this paper, we propose a privacy-preserving health data aggregation scheme using differential privacy. In our scheme, patients' health data are aggregated by the local healthcare center before it is used by data comsumers, and this prevents individual's data from being leaked. Moreover, compared with the existing schemes in the literature, our work enjoys two additional benefits: 1) it not only resists many well known attacks in the open wireless networks, but also achieves the resilience against the human-factor-aware differential aggregation attack; 2) no trusted third party is employed in our proposed scheme, hence it achieves the robustness property and it does not suffer the single point failure problem.
본 논문에서는 지역 차분 프라이버시(Local Differential Privacy, LDP) 기법을 이용하여 프라이버시를 보호하면서 수집한 차량 위치 데이터와 딥러닝 기법을 이용하여 교통량을 예측하기 위한 기법을 제시한다. 제시한 기법은 데이터를 수집하는 과정과 수집한 데이터를 이용하여 교통량을 예측하는 과정으로 구성된다. 첫 번째 단계에서는 데이터 수집 과정 중에 발생할 수 있는 프라이버시 침해 문제를 해결하기 위해 LDP 기법을 적용하여 차량의 위치 데이터를 수집한다. LDP 기법은 데이터 수집 시 원본 데이터에 노이즈를 추가해 사용자의 민감한 데이터가 외부에 노출되는 것을 방지한다. 이를 통해 운전자의 프라이버시를 보존하면서 차량의 위치 데이터를 수집할 수 있다. 두 번째 단계에서는 첫 번째 단계에서 수집한 데이터에 딥러닝 기법을 적용하여, 교통량을 예측한다. 또한, 본 논문에서 제안한 기법의 우수성을 입증하기 위해, 실데이터를 이용한 성능 평가를 진행한다. 성능 평가 결과는 본 논문에서 제안한 기법이 사용자의 프라이버시를 보호하면서 수집된 데이터를 이용하여 효과적으로 교통량을 예측할 수 있음을 입증한다.
데이터 비식별화 기법은 데이터 내에 속한 개인 정보에 대한 프라이버시를 만족하면서 동시에 데이터 분석가들에게 유용한 정보를 습득할 수 있게 하는 반드시 필요한 기술 중 하나이다. 그러나 k-익명성과 같은 기존의 비식별화 기법은 공격자의 사전지식(Background knowledge)에 근본적으로 취약한 약점을 지니고 있다. 하지만 차분 프라이버시(Differential privacy)는 기존의 비식별화 기법들과는 다르게 개인 정보에 대한 강력한 안전성을 보장하는 모델로써 최근 들어 이에 대한 연구가 매우 활발히 진행 중에 있다. 본 논문은 이러한 차분 프라이버시가 적용된 기술에 대한 연구 및 분석을 통해 금융 데이터 상에서의 차분 프라이버시 모델을 정립하였으며 이러한 모델들은 금융 데이터 상에서 유용하게 사용될 수 있음을 입증하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권6호
/
pp.1462-1477
/
2024
With the evolving complexity of connected vehicle features, the volume and diversity of data generated during driving continue to escalate. Enabling data sharing among interconnected vehicles holds promise for improving users' driving experiences and alleviating traffic congestion. Yet, the unintentional disclosure of users' private information through data sharing poses a risk, potentially compromising the interests of vehicle users and, in certain cases, endangering driving safety. Federated learning (FL) is a newly emerged distributed machine learning paradigm, which is expected to play a prominent role for privacy-preserving learning in autonomous vehicles. While FL holds significant potential to enhance the architecture of the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is proposed which is efficient for reducing communication and protecting data privacy. By assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized data processing and model training while reducing communication overhead. Simultaneously, the Local Differential Privacy (LDP) mechanism is incorporated during local training to safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the proposed scheme can ensure data privacy effectively while reducing communication overhead.
오늘날 사물 인터넷은 우리에게 편의를 제공하기 위해 가정, 산업 현장 및 병원을 포함한 많은 장소에서 사용된다. 다양한 장치가 네트워크에 연결됨에 따라 많은 서비스들이 실시간 데이터 수집, 저장 및 분석을 통해 새로운 가치를 창출하고 있다. 이처럼 많은 분야에서 IoT 장치 내의 센서 및 통신 기능을 활용하는 서비스 및 애플리케이션을 개발하고 있다. 예시로 산업 분야에서 Samsung과 LG는 자사의 IoT 애플리케이션을 통해 가전과 IoT 기기를 연결하여 스마트 홈을 구축하는 서비스를 제공하며, 의료 및 건강 분야에서 Samsung과 Xioami와 같은 기업들은 피트니스 워치 및 앱을 통해 심전도를 확인하거나 운동량을 기록, 관리한다. 위 같은 사례에서 스마트 홈을 구축하는 서비스의 경우에 수집한 데이터를 통해 해당 가정의 생활 패턴이나 출퇴근 여부 등의 민감정보를 유출할 수 있다. 또한 의료 데이터로 사용하기 위해 측정한 데이터를 통해 개인 정보와 질병의 존재와 같은 민감정보를 유출할 수 있다. 따라서 이를 보호하기 위해 해당 논문이 제안하는 방법에 따라 데이터를 수집, 배포한다면 데이터를 제공하는 사용자의 개인 정보 보호에 위협을 막을 수 있다. 이를 해결하기 위해 최근에는 프라이버시 보호 데이터 처리에 차분 프라이버시(DP)가 채택되어왔다. 따라서 DP를 기반으로 스마트워치 플랫폼에서 건강 데이터를 안전하게 수집할 수 있는 방법을 제안하며, 이를 통해 위와 같이 다양한 분야에서 프라이버시를 보호하는 환경에서의 데이터 수집 및 배포를 가능케 할 수 있다.
빅데이터 시대의 도래로 다양한 데이터들이 발생되고 있다. 많은 산업 부분에서는 이러한 데이터들을 수집하여 분석하고자 한다. 하지만 사용자 정보 수집은 직접적인 개인정보 유출을 초래할 수 있다. 구글(Google) 사에서 제안한 지역 차분 프라이버시 기법은 데이터 변조를 통해 사용자 정보 수집에 있어 발생할 수 있는 개인정보 유출을 방지한다. 이러한 데이터 변조를 통한 개인정보 유출 방지는 그 변조되는 정도가 높을수록 개인정보를 강력히 보장하지만 이와 반대로 데이터의 활용도는 현저히 떨어진다. 그래서 데이터 변조의 정도를 데이터 수집목적에 적합하게 설정해야한다. 본 논문에서 제시하는 시뮬레이션 도구는 지역 차분 프라이버시를 만족하는 사용자 정보 수집에 있어 설정해야하는 다양한 변수값을 데이터 수집환경에 맞게 적용함으로써 데이터 수집가가 자신의 환경에 맞는 데이터 수집을 할 수 있도록 지원한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.