1 |
Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2018). Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. (pp.661). Future Generation Computer Systems, 78, 659-676.
DOI
|
2 |
AbuKhousa, E., Mohamed, N., & Al-Jaroodi, J. (2012). e-Health cloud: opportunities and challenges. (pp.623). Future internet, 4(3), 621-645.
DOI
|
3 |
Samani, A., Ghenniwa, H. H., & Wahaishi, A. (2015). Privacy in Internet of Things: A model and protection framework. (pp.606). Procedia Computer Science, 52, 606-613.
DOI
|
4 |
Lu, R., Heung, K., Lashkari, A. H., & Ghorbani, A. A. (2017). A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access, 5, 3302-3312.
DOI
|
5 |
Kim, J. W., Kim, D. H., & Jang, B. (2018). Application of local differential privacy to collection of indoor positioning data. pp. 1. IEEE Access, 6, 4276-4286.
DOI
|
6 |
Kim, J. W., Lim, J. H., Moon, S. M., Yoo, H., & Jang, B. (2019, January). Privacy-Preserving Data Collection Scheme on Smartwatch Platform. In 2019 IEEE International Conference on Consumer Electronics (ICCE) pp. 2. IEEE.
|
7 |
Wang, T., Blocki, J., Li, N., & Jha, S. (2017). Locally differentially private protocols for frequency estimation. pp. 729. In 26th {USENIX} Security Symposium ({USENIX} Security 17) (pp. 729-745).
|
8 |
Du, W., & Zhan, Z. (2003, August). Using randomized response techniques for privacy-preserving data mining. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 505-510). ACM.
|
9 |
Erlingsson, U., Pihur, V., & Korolova, A. (2014, November). Rappor: Randomized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on computer and communications security (pp. 1054-1067). ACM.
|
10 |
Du, W., & Zhan, Z. (2003, August). Using randomized response techniques for privacy-preserving data mining. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 505-510). ACM.
|
11 |
Masip-Bruin, X., Marin-Tordera, E., Alonso, A., & Garcia, J. (2016, June). Fog-to-cloud computing (F2C): The key technology enabler for dependable e-health services deployment. In 2016 Mediterranean ad hoc networking workshop (Med-Hoc-Net) (pp. 1-5). IEEE.
|
12 |
Bonomi, F., Milito, R., Natarajan, P., & Zhu, J. (2014). Fog computing: A platform for internet of things and analytics. In Big data and internet of things: A roadmap for smart environments (pp. 169-186). Springer, Cham.
|
13 |
Stojmenovic, I., & Wen, S. (2014, September). The fog computing paradigm: Scenarios and security issues. In 2014 Federated Conference on Computer Science and Information Systems (pp. 1-8). IEEE.
|
14 |
Dwork, C. (2011). Differential privacy. Encyclopedia of Cryptography and Security, 338-340.
|
15 |
Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012, August). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing (pp. 13-16). ACM.
|