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Abstract 
 

Patients' health data is very sensitive and the access to individual's health data should be 
strictly restricted. However, many data consumers may need to use the aggregated health data. 
For example, the insurance companies needs to use this data to setup the premium level for 
health insurances. Therefore, privacy-preserving data aggregation solutions for health data 
have both theoretical importance and application potentials. In this paper, we propose a 
privacy-preserving health data aggregation scheme using differential privacy. In our scheme, 
patients' health data are aggregated by the local healthcare center before it is used by data 
comsumers, and this prevents individual's data from being leaked. Moreover, compared with 
the existing schemes in the literature, our work enjoys two additional benefits: 1) it not only 
resists many well known attacks in the open wireless networks, but also achieves the resilience 
against the human-factor-aware differential aggregation attack; 2) no trusted third party is 
employed in our proposed scheme, hence it achieves the robustness property and it does not 
suffer the single point failure problem.   
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1. Introduction 

In the wireless body area network [1], the implanted or wearable biosensor can be used to 
measure the patients’ health data, such as the temperature, the blood pressure, etc. In the 
authenticated manner [2-7], after the health data is collected, it will be transmitted to the 
doctor in the local healthcare center (LHC) in the authenticated manner. Therefore, the doctor 
can give precise diagnosis and treatment. Moreover, the aggregated health data has many real 
world applications. For example, the insurance company can analyze the aggregated result of 
the health data in a specific area, and then make a decision. However, if the health data of the 
patient is transmitted directly, the privacy will be violated, and this might have serious 
consequences, such as financial fines or even law prosecutions. For instance, with the 
knowledge of some people’s poor body condition, the insurance company might refuse to 
provide the insurance service for them. Therefore, it is necessary to design a 
privacy-preserving health data aggregation scheme, which allows LHC to aggregate the health 
data in a designated region without knowing an individual one.  

In order to ensure the privacy property, the individual health data should be encrypted or 
processed anonymously. As shown in Fig. 1, the patient transmits the processed health data to 
LHC, and the doctor in LHC can make the diagnosis and give the treatment due to the patient’s 
data. Furthermore, LHC aggregates the received data, and sends the aggregated result to the 
healthcare cloud. Moreover, the data consumers can utilize the aggregated result which is 
stored in the healthcare cloud. 

Although there are many existing works on data aggregation in the literature, the majority of 
them may suffer the human-factor-aware differential aggregation (HDA) attack [8], which 
aims to break the privacy. Moreover, many data aggregation schemes rely on a trusted entity to 
ensure confidentiality for the sensitive data, so that the robustness requirement is not satisfied 
in a high level because of the potential single point failure problem. In [9-11], using trusted 
gateway and operating center, the single data is protected by the homomorphic encryption 
technique. However, the privacy will be violated if the gateway and the operating center are 
not trusted. In [12], a one-way virtual ring is used for the aggregation. However, the 
aggregation operation will fail if any smart device of the ring breaks down. In 2014, Fan et al. 
proposed a data aggregation scheme [13] based on the subgroup decision assumption. 
However, each user’s private key can be extracted from the public information in the 
registration phase, and this flaw has been resolved later [14]. Moreover, the privacy is 
preserved by the blind factor, which is distributed by an off-line trusted third party, and thus 
there exists the trust bottleneck in the proposed scheme. Therefore, many of the existing 
schemes need further improvement in order to suit the practical environment [15,16]. 

In this paper, we propose a health data aggregation scheme, which also allows LHC to 
aggregate the health data in a specific area without knowing a single one. The security of the 
proposed scheme is mainly based on the differential privacy [8] and the subgroup decision 
assumption [13]. Compared with other data aggregation schemes, the proposed scheme has 
two contributions: 1) The proposed scheme not only resists many well know attacks, such as 
external attack, internal attack, replay attack, impersonation attack and modification attack, 
but also it is robust against the new HDA attack. Therefore, our proposed scheme achieves a 
higher level of privacy. 2) The proposed scheme does not employ a trusted third party. Hence 
it achieves the robustness property and it does not suffer the single point failure problem. 

The remainder of the paper is organized as follows: The necessary preliminaries are 
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introduced in Section 2. Afterwards, the health data aggregation scheme is presented in 
Section 3, and its security and efficiency are analyzed in Section 4. Finally, the paper is 
concluded in Section 5.  

 
 

Fig. 1. Network model 

2. Preliminaries 
In this section, we describe the related assumptions and techniques. 
• Secure Hash Function 
Assume ℎ(𝑥𝑥) is a secure hash function. It is computationally infeasible to extract 𝑎𝑎 from a 

given value ℎ(𝑎𝑎) or to find a pair of values (𝑎𝑎, 𝑏𝑏) such that ℎ(𝑎𝑎) = ℎ(𝑏𝑏) where 𝑎𝑎 ≠ 𝑏𝑏 [17]. 
• Subgroup Decision Assumption 
Given an element 𝑥𝑥 that belongs to a group 𝐺𝐺0 with a composite order 𝑁𝑁 = 𝑞𝑞1𝑞𝑞2, where 

𝑞𝑞1,𝑞𝑞2 are large prime numbers, it is computationally infeasible to decide if 𝑥𝑥 ∈ 𝐺𝐺0 is in a 
subgroup with order 𝑞𝑞1 [18]. 
• Discrete Logarithm Assumption 
Suppose 𝑔𝑔2  is the generator of a cyclic multiplicative group 𝐺𝐺1  with order 𝑞𝑞 , it is 

computationally infeasible to compute 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔2 𝑦𝑦 given 𝑦𝑦 = 𝑔𝑔2𝑥𝑥 [19]. 

• Bilinear Pairing 
Suppose 𝐺𝐺1 and 𝐺𝐺2 are two cyclic multiplicative groups with order 𝑞𝑞, and 𝑔𝑔2 is a generator 

of 𝐺𝐺1. Furthermore, the discrete logarithm assumption holds both in 𝐺𝐺1 and 𝐺𝐺2. A bilinear 
map 𝑒𝑒: 𝐺𝐺1 × 𝐺𝐺1  →  𝐺𝐺2 satisfies the following properties [20]: 

Bilinear: For any 𝑃𝑃,𝑄𝑄 ∈ 𝐺𝐺1, 𝑎𝑎, 𝑏𝑏 ∈ 𝑍𝑍𝑞𝑞∗, 𝑒𝑒(𝑃𝑃𝑎𝑎 ,𝑄𝑄𝑏𝑏) = 𝑒𝑒(𝑃𝑃,𝑄𝑄)𝑎𝑎𝑎𝑎 and 𝑒𝑒(𝑃𝑃,𝑃𝑃) ≠ 1𝐺𝐺2. 
Non-degenerate: There exist 𝑃𝑃,𝑄𝑄 ∈ 𝐺𝐺1 such that 𝑒𝑒(𝑃𝑃,𝑄𝑄) ≠ 1𝐺𝐺2. 
Computable: For any 𝑃𝑃,𝑄𝑄 ∈ 𝐺𝐺1, there exists an efficient algorithm to compute 𝑒𝑒(𝑃𝑃,𝑄𝑄). 
• Gap Diffie-Hellman Group 
Assume that 𝑔𝑔2 is the generator of a cyclic multiplicative group 𝐺𝐺1 with the order 𝑞𝑞. 
Computational Diffie-Hellman (CDH) problem: For any 𝑎𝑎, 𝑏𝑏 ∈ 𝑍𝑍𝑞𝑞∗, the CDH problem asks 
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to derive 𝑔𝑔2𝑎𝑎𝑎𝑎 from the given �𝑔𝑔2𝑎𝑎 ,𝑔𝑔2𝑏𝑏�. 
Decision Diffie-Hellman (DDH) problem: For any 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝑍𝑍𝑞𝑞∗, given �𝑔𝑔2𝑎𝑎 ,𝑔𝑔2𝑏𝑏 ,𝑔𝑔2𝑐𝑐�, the 

DDH problem asks to determine whether 𝑔𝑔2𝑎𝑎𝑎𝑎 = 𝑔𝑔2𝑐𝑐. 
If the computational Diffie-Hellman problem is hard but the decision Diffie-Hellman 

problem is easy to solve in a cyclic multiplicative group 𝐺𝐺1, 𝐺𝐺1 is referred to as the gap 
Diffie-Hellman (GDH) group [21]. 
• HDA attack 
Suppose that the health data of 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4,𝑃𝑃5 are aggregated, and 𝑃𝑃5 is the target member. 

In addition, assume 𝑃𝑃5 does not use the device in the time slot 𝑇𝑇1 but uses it in the adjacent 
time slot 𝑇𝑇2, and the health data of 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4 are relatively stable in these two time slots. 
Therefore, LHC can derive the health data of 𝑃𝑃5 in the time slot 𝑇𝑇2 by comparing the two 
aggregated results [8]. 
• Assumption for Byzantine Agreement 
The classical assumption of the Byzantine literature (The classical assumption for 

Byzantine agreement) [22] is employed to resist against the collusion attack. In the assumption, 
the attacker might corrupt LHC, and compromise no more than 1/3 patients. Finally, the 
attacker colludes with the compromised LHC and patients, and launches the collusion attack 
(i.e., HDA attack). 
• Differential Privacy 
In the query access, the differential privacy [22] is usually employed to achieve the privacy. 

By adding the proper Gaussian or exponentially distributed random noise, the administrator 
can obscure the true answer slightly before the query result is sent to the user. Furthermore, the 
similar inputs, which differ on a tiny entry, generate the indistinguishable outputs. 

A randomized algorithm 𝒦𝒦 is 𝜀𝜀-indistinguishability 𝛿𝛿-approximation: Given two data sets 
𝐷𝐷1 and 𝐷𝐷2, which differ on at most one element, and all 𝑆𝑆 ⊆ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒦𝒦), where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒦𝒦) 
consists of all possible values of 𝒦𝒦. 

 
                                           𝑃𝑃𝑃𝑃[𝒦𝒦(𝐷𝐷1) ∈ 𝑆𝑆] ≤ 𝑒𝑒𝜀𝜀𝑃𝑃𝑃𝑃[𝒦𝒦(𝐷𝐷2) ∈ 𝑆𝑆] +  𝛿𝛿                                  (1) 

 
If all computations are performed over a finite field, the unbiased binomial distribution 

𝐵𝐵(𝑤𝑤, 1/2) [8] is employed to replace the Gaussian distribution. Afterwards, the following 
facts take the important roles in the proposed scheme. 

Fact 1. Given the global sensitivity 𝛥𝛥 (i.e., the interval of each patient’s health data), and in 
order to make 𝐵𝐵(𝑤𝑤, 1/2)  𝜀𝜀 -indistinguishability 𝛿𝛿 -approximation, 𝑤𝑤  should be at least 
64𝛥𝛥2𝑙𝑙𝑙𝑙𝑙𝑙(2 𝛿𝛿⁄ ) 𝜀𝜀2⁄  [8].  

Fact 2. If 𝑉𝑉𝑖𝑖~ 𝐵𝐵(𝑤𝑤𝑖𝑖 ,𝑝𝑝𝑝𝑝) and 𝑉𝑉𝑖𝑖, 𝑖𝑖 = 1, 2,⋯ ,𝑛𝑛 are independent and identically distributed, 
∑  𝑉𝑉𝑖𝑖𝑛𝑛
𝑖𝑖=1  ~ 𝐵𝐵(∑  𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 ,𝑝𝑝𝑝𝑝). 

3. Our Proposal 
In this section, we present a novel aggregation scheme, where there only exists 𝑛𝑛 patients and 
LHC in the specific area, and LHC can derive the summation of the patients’ health data 
without the knowledge of the individual one. Some notations for the relavant parameters are 
defined in Table 1. 
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3.1 Initialization Phase 
1. Given the pre-set security parameters 𝜀𝜀, 𝛿𝛿, which are determined by LHC due to the 

tradeoff between the security and the usability, LHC computes 𝑤𝑤𝑛𝑛 = ⌈3𝑤𝑤 2𝑛𝑛⁄ ⌉ , where 
𝑤𝑤 = 64𝛥𝛥2𝑙𝑙𝑙𝑙𝑙𝑙(2 𝛿𝛿⁄ ) 𝜀𝜀2⁄ . 

2. LHC chooses three large prime numbers 𝑞𝑞, 𝑞𝑞1,𝑞𝑞2, and computes 𝑁𝑁 = 𝑞𝑞1𝑞𝑞2. 
3. From a cyclic multiplicative group 𝐺𝐺0 of order 𝑁𝑁, LHC determines a generator 𝑔𝑔0 and a 

random number 𝑢𝑢 ∈ 𝐺𝐺0, and computes ℎ = 𝑢𝑢𝑞𝑞2, 𝑔𝑔1 = 𝑔𝑔0𝑞𝑞1. Then LHC chooses a generator 
𝑔𝑔2  of a cyclic multiplicative group 𝐺𝐺1  with order 𝑞𝑞 . Moreover, the subgroup decision 
assumption holds in 𝐺𝐺0, and the discrete logarithm assumption holds in the GDH group 𝐺𝐺1. 

4. LHC keeps 𝑞𝑞1,𝑞𝑞2  secretly, chooses a secure hash function 𝐻𝐻(𝑥𝑥) and a bilinear map 
𝑒𝑒(𝐺𝐺1,𝐺𝐺1) → 𝐺𝐺2, and publishes 
                                                        {𝑁𝑁, 𝑞𝑞,𝑔𝑔0,𝑔𝑔2,ℎ,𝑤𝑤𝑛𝑛,𝐻𝐻(𝑥𝑥), 𝑒𝑒}                                           (2)  
 

5. Each patient 𝑃𝑃𝑖𝑖 registers at LHC using the public key 𝑦𝑦𝑖𝑖 = 𝑔𝑔2𝑥𝑥𝑖𝑖 ∈ 𝐺𝐺1 with the identifier 
𝐼𝐼𝐼𝐼𝑖𝑖. Finally, LHC stores {𝐼𝐼𝐼𝐼𝑖𝑖,𝑦𝑦𝑖𝑖} in its database for the verification in the Aggregation Phase.  
 

Table 1. Notation for related parameters 
Notation Definition 

𝑃𝑃𝑖𝑖  The patients in the specific area, where 𝑖𝑖 = 1, 2,⋯ ,𝑛𝑛. 
𝐼𝐼𝐼𝐼𝑖𝑖 The identifier of 𝑃𝑃𝑖𝑖 . 
𝑥𝑥𝑖𝑖 The private key of 𝑃𝑃𝑖𝑖 . 
𝑦𝑦𝑖𝑖 The public key of 𝑃𝑃𝑖𝑖 . 
𝐻𝐻 The secure hash function, 𝐻𝐻: {0, 1}∗ → 𝐺𝐺1. 
𝑡𝑡 The time for the aggregation. 
𝑚𝑚𝑖𝑖 The health data collected by 𝑃𝑃𝑖𝑖  at time 𝑡𝑡. 
𝛥𝛥 The interval of 𝑚𝑚𝑖𝑖. 

𝐵𝐵(𝑤𝑤𝑛𝑛, 1 2⁄ ) The unbiased binomial distribution. 

 

3.2 Aggregation Phase 
1. 𝑃𝑃𝑖𝑖 collects the health data 𝑚𝑚𝑖𝑖 ∈ [0, 1,⋯ ,𝛥𝛥] at time 𝑡𝑡, then chooses 𝑣𝑣𝑖𝑖~𝐵𝐵(𝑤𝑤𝑛𝑛, 1 2⁄ ) and 

𝑟𝑟𝑖𝑖′ ∈ 𝑍𝑍𝑁𝑁∗  randomly. 𝑃𝑃𝑖𝑖  computes the ciphertext 𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑔𝑔0𝑚𝑚𝑖𝑖+𝑣𝑣𝑖𝑖ℎ𝑟𝑟𝑖𝑖′  and the corresponding 
signature 𝜎𝜎𝑖𝑖 = 𝐻𝐻(𝑡𝑡||𝐶𝐶𝐶𝐶𝑖𝑖)𝑥𝑥𝑖𝑖, and sends {𝐼𝐼𝐼𝐼𝑖𝑖,𝐶𝐶𝐶𝐶𝑖𝑖,𝜎𝜎𝑖𝑖} to LHC. 

2. With the received {𝐼𝐼𝐼𝐼𝑖𝑖,𝐶𝐶𝐶𝐶𝑖𝑖,𝜎𝜎𝑖𝑖}, LHC extracts 𝑃𝑃𝑖𝑖’s public key 𝑦𝑦𝑖𝑖 with 𝐼𝐼𝐼𝐼𝑖𝑖 in the database, 
and verifies them by checking 𝑒𝑒(𝜎𝜎𝑖𝑖,𝑔𝑔2) = 𝑒𝑒(𝐻𝐻(𝑡𝑡||𝐶𝐶𝐶𝐶𝑖𝑖),  𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, 2,⋯ ,𝑛𝑛. With the selected 
𝑛𝑛  random numbers 𝑘𝑘𝑖𝑖 ∈ 𝑍𝑍𝑞𝑞∗, 𝑖𝑖 = 1, 2,⋯ ,𝑛𝑛,  LHC checks the equation  
∏ 𝑒𝑒�𝜎𝜎𝑖𝑖𝑘𝑘𝑖𝑖 ,𝑔𝑔2� =𝑛𝑛
𝑖𝑖=1 𝑒𝑒�∏ 𝐻𝐻(𝑡𝑡||𝐶𝐶𝐶𝐶𝑖𝑖)𝑘𝑘𝑖𝑖 ,𝑛𝑛

𝑖𝑖=1  𝑦𝑦𝑖𝑖� to speed up the verification. 
3. If all the verifications hold, LHC computes 𝑉𝑉 = (∏ 𝐶𝐶𝐶𝐶𝑖𝑖𝑛𝑛

𝑖𝑖=1 )𝑞𝑞1 = 𝑔𝑔1∑ 𝑚𝑚𝑖𝑖+𝑣𝑣𝑖𝑖𝑛𝑛
𝑖𝑖=1 . 

Furthermore, LHC derives ∑ 𝑚𝑚𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑛𝑛
𝑖𝑖=1  from 𝑉𝑉 with the base 𝑔𝑔1 using the Pollard’s lambda 

method, which costs the expected polynomial time 𝑂𝑂���𝑛𝑛(𝛥𝛥 + 𝑤𝑤𝑛𝑛)� [16, 23] due to the 
non-cryptographic interval 0 < ∑ 𝑚𝑚𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1 < 𝑛𝑛(𝛥𝛥 + 𝑤𝑤𝑛𝑛). As a consequence, LHC outputs 
the approximate aggregated result ∑ 𝑚𝑚𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1 − ⌈𝑛𝑛𝑤𝑤𝑛𝑛 2⁄ ⌉, where 𝑛𝑛𝑤𝑤𝑛𝑛 2⁄  is the expectation 
of the added noise summation ∑ 𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1 . Each step is depicted in Fig. 2. 
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3.3 Correctness of Health Data Aggregation 
The parameter 𝑔𝑔0 is the generator of the cyclic multiplicative group 𝐺𝐺0 with order 𝑁𝑁, and thus 
𝑔𝑔0𝑁𝑁 = 1. Furthermore, 𝑢𝑢 belongs to 𝐺𝐺0, and there thus exists a number 𝛼𝛼 ∈ 𝑍𝑍𝑁𝑁∗ satisfying 
that 𝑢𝑢 = 𝑔𝑔0𝛼𝛼. Therefore, 𝑢𝑢𝑁𝑁 = (𝑔𝑔0𝛼𝛼)𝑁𝑁 = (𝑔𝑔0𝑁𝑁)𝛼𝛼 = 1𝛼𝛼 = 1. The correctness of the health 
data aggregation is shown as follows: 
 
                                          𝑉𝑉 = (∏ 𝐶𝐶𝐶𝐶𝑖𝑖𝑛𝑛

𝑖𝑖=1 )𝑞𝑞1 = 𝑔𝑔0𝑞𝑞1 ∑ 𝑚𝑚𝑖𝑖+𝑣𝑣𝑖𝑖𝑛𝑛
𝑖𝑖=1 ℎ𝑞𝑞1 ∑ 𝑟𝑟𝑖𝑖′𝑛𝑛

𝑖𝑖=1   
                                              = 𝑔𝑔1∑ 𝑚𝑚𝑖𝑖+𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑢𝑢𝑞𝑞1𝑞𝑞2 ∑ 𝑟𝑟𝑖𝑖′𝑛𝑛
𝑖𝑖=1  

                                              = 𝑔𝑔1∑ 𝑚𝑚𝑖𝑖+𝑣𝑣𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑢𝑢𝑁𝑁∑ 𝑟𝑟𝑖𝑖′𝑛𝑛

𝑖𝑖=1  
  = 𝑔𝑔1∑ 𝑚𝑚𝑖𝑖+𝑣𝑣𝑖𝑖𝑛𝑛
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Fig. 2. Aggregation 
 

4. Analysis 
In this section, we provide security and efficiency analysis of our proposed scheme. Moreover, 
we briefly discuss its usability in real world applications. 

4.1 Security Analysis 
In this subsection, we demonstrate that the proposed scheme resists against not only the well 
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known attacks (i.e., the external attack, the internal attack, the impersonation attack, the 
modification attack, and the replay attack), but also the new HDA attack. Moreover, it is 
shown that the robustness is achieved in the proposed scheme.  
• Privacy-preservation 

Generally speaking, the attackers can be divided into two categories: the inside attacker and 
the outside attacker. The inside attacker includes LHC and the patients who attempt to violate 
the privacy of other patients, and the outside attacker is an illegal party, who does not involve 
in the proposed scheme. 

Scenario 1. The proposed scheme can resist against the external attack, i.e., it is 
computationally infeasible for an outside adversary to obtain 𝑚𝑚𝑖𝑖 from 𝐶𝐶𝐶𝐶𝑖𝑖. 

Proof The ciphertext 𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑔𝑔0𝑚𝑚𝑖𝑖+𝑣𝑣𝑖𝑖ℎ𝑟𝑟𝑖𝑖′  can be eavesdropped by the outsider. If the 
adversary manages to derive 𝑚𝑚𝑖𝑖  from 𝐶𝐶𝐶𝐶𝑖𝑖 , he should know 𝑣𝑣𝑖𝑖 , 𝑟𝑟𝑖𝑖′ or 𝑣𝑣𝑖𝑖, 𝑞𝑞1. Unfortunately, 
𝑣𝑣𝑖𝑖, 𝑟𝑟𝑖𝑖′ are secretly hold by the patient 𝑃𝑃𝑖𝑖, and 𝑞𝑞1 is privately hold by LHC. 

Scenario 2. The proposed scheme can resist against the internal attack, i.e., it is 
computationally infeasible for an internal adversary to extract 𝑚𝑚𝑖𝑖 from 𝐶𝐶𝐶𝐶𝑖𝑖. 

Proof The inside adversary (other patient 𝑃𝑃𝑗𝑗, 𝑗𝑗 ≠ 𝑖𝑖) cannot extract 𝑚𝑚𝑖𝑖 from 𝐶𝐶𝐶𝐶𝑖𝑖 successfully, 
since he has no idea about 𝑣𝑣𝑖𝑖, 𝑟𝑟𝑖𝑖′ or 𝑣𝑣𝑖𝑖, 𝑞𝑞1. Furthermore, if LHC succeeds in deriving 𝑚𝑚𝑖𝑖, he 
should at least learn 𝑣𝑣𝑖𝑖 which is randomly selected by the patient 𝑃𝑃𝑖𝑖. Therefore, the proposed 
scheme can resist against the internal attack. 

Scenario 3. The proposed scheme can resist against the HDA attack. 
Suppose there exist 3 patients 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 in a specific area, and the health data 𝑚𝑚1,𝑚𝑚2 of 

𝑃𝑃1,𝑃𝑃2 are relatively stable at two adjacent time slots 𝑇𝑇1 and 𝑇𝑇2. However, 𝑃𝑃3 uses the medical 
device at time slot 𝑇𝑇1, but does not use it at time slot 𝑇𝑇2. By comparing the aggregated results 
at the two time slots, it is impossible for the adversary to derive the health data 𝑚𝑚3 of 𝑃𝑃3 at 
time slot 𝑇𝑇1. 

Proof The noise aggregated result at the time slots 𝑇𝑇1 and 𝑇𝑇2 are 𝑀𝑀1 = ∑ 𝑚𝑚𝑖𝑖
3
𝑖𝑖=1 + 𝑉𝑉1 and 

𝑀𝑀2 = ∑ 𝑚𝑚𝑖𝑖
2
𝑖𝑖=1 + 𝑉𝑉2 respectively, where 𝑉𝑉1,𝑉𝑉2~𝐵𝐵(3𝑤𝑤3, 1 2⁄ ). It is infeasible for the adversary 

to derive 𝑚𝑚3  by computing 𝑀𝑀1 −𝑀𝑀2 , since 𝐵𝐵(3𝑤𝑤3, 1 2⁄ )  is 𝜀𝜀 -indistinguishability 
𝛿𝛿-approximation.  

Therefore, the proposed scheme resists against not only the external attack and the internal 
attack, but also the new HDA attack. As a consequence, the privacy property has been 
enhanced to a higher level compared with existing schemes.  
• Resilience against impersonation attack 

Scenario 4. The proposed scheme can resist against the impersonation attack, i.e., it is 
infeasible for the adversary to impersonate the legal patient 𝑃𝑃𝑖𝑖 to provide LHC with the valid 
message. 

Proof To impersonate 𝑃𝑃𝑖𝑖, the adversary should have knowledge about the private key 𝑥𝑥𝑖𝑖 of 
𝑃𝑃𝑖𝑖 . Given the public key 𝑦𝑦𝑖𝑖 = 𝑔𝑔2𝑥𝑥𝑖𝑖  and signature 𝜎𝜎𝑖𝑖 = 𝐻𝐻(𝑡𝑡||𝐶𝐶𝐶𝐶𝑖𝑖)𝑥𝑥𝑖𝑖 , it is infeasible in 
polynomial time to extract 𝑥𝑥𝑖𝑖 due to the discrete logarithm assumption in 𝐺𝐺1. As a result, the 
adversary cannot launch the impersonation attack. 
• Resilience against modification attack 

Scenario 5. The proposed scheme can resist against the modification attack, i.e., if the 
adversary modifies a message being sent to LHC, and transmits the modified result to LHC, it 
can be detected by LHC. 

 
 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016                                       3859 

Table 2. Security features comparision of related works 

 Our scheme Li et al.’s 
scheme [10] 

Fan et al.’s 
scheme [13] 

He et al.’s 
scheme [14] 

PPR 
REX Yes Yes Yes Yes 
RIN Yes No Yes Yes 
RHD Yes No No No 

RIM Yes Yes No Yes 
RMO Yes Yes Yes Yes 
RRE Yes Yes Yes Yes 
ROU Yes No No No 

              PPR: Privacy-Preservation  
              REX: Resilience against External Attack 
              RIN: Resilience against Internal Attack 
              RHD: Resilience against HDA Attack 
              RIM: Resilience against Impersonation Attack 
              RMO: Resilience against Modification Attack 
              RRE: Resilience against Replay attack 
              ROU: Robustness 
              : Relying on On-line Trusted Third Party 
              : Relying on Off-line Trusted Third Party 
 

 
Fig. 3. Relative error. (a) When 𝑛𝑛 = 3000, 𝛥𝛥 = 5 and ∑ 𝑚𝑚𝑖𝑖

3000
𝑖𝑖=1 = 7500. (b) When 𝑛𝑛 = 6000, 

 𝛥𝛥 = 5 and ∑ 𝑚𝑚𝑖𝑖
6000
𝑖𝑖=1 = 15000. 

 
 

Proof Suppose the adversary modifies {𝐼𝐼𝐼𝐼𝑖𝑖,𝐶𝐶𝐶𝐶𝑖𝑖,𝜎𝜎𝑖𝑖} into {𝐼𝐼𝐼𝐼𝑖𝑖,𝐶𝐶𝐶𝐶𝑖𝑖′,𝜎𝜎𝑖𝑖′}, and tries to enable 
the modified result to pass the verification 𝑒𝑒(𝜎𝜎𝑖𝑖′,𝑔𝑔2) = 𝑒𝑒(𝐻𝐻(𝑡𝑡||𝐶𝐶𝐶𝐶𝑖𝑖′),  𝑦𝑦𝑖𝑖). 

Except for guessing the correct 𝜎𝜎𝑖𝑖′, it is impossible for the adversary to determine 𝜎𝜎𝑖𝑖′ from 
𝑒𝑒(𝜎𝜎𝑖𝑖′,𝑔𝑔2) = 𝑒𝑒(𝐻𝐻(𝑡𝑡||𝐶𝐶𝐶𝐶𝑖𝑖′),  𝑦𝑦𝑖𝑖) for the given 𝐶𝐶𝐶𝐶𝑖𝑖′, since  𝐺𝐺1 is a GDH group [13]. Similarly, for 
the given 𝜎𝜎𝑖𝑖′, it is also infeasible to obtain 𝐶𝐶𝐶𝐶𝑖𝑖′ from 𝑒𝑒(𝜎𝜎𝑖𝑖′,𝑔𝑔2) =  𝑒𝑒(𝐻𝐻(𝑡𝑡||𝐶𝐶𝐶𝐶𝑖𝑖′),  𝑦𝑦𝑖𝑖) due to the 
GDH group  𝐺𝐺1 and the feature of the secure hash function. 

As a consequence, if the adversary transmits a modified result, it can be detected by LHC. 
Therefore, the proposed scheme can resist against the modification attack. 
• Resilience against replay attack 

Scenario 6. The proposed scheme can resist against the replay attack, i.e., at time 𝑡𝑡2, the 
adversary sends a message �𝐼𝐼𝐼𝐼𝑖𝑖,𝐶𝐶𝐶𝐶𝑖𝑖1,𝜎𝜎𝑖𝑖1� which has been used at time 𝑡𝑡1 (𝑡𝑡1 < 𝑡𝑡2), and this 
can be detected by LHC. 

Proof To launch the replay attack, the adversary provides LHC with the used 
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�𝐼𝐼𝐼𝐼𝑖𝑖,𝐶𝐶𝐶𝐶𝑖𝑖1,𝜎𝜎𝑖𝑖1� at 𝑡𝑡2. It can be detected by LHC, since 𝑒𝑒(𝜎𝜎𝑖𝑖1,𝑔𝑔2) ≠ 𝑒𝑒�𝐻𝐻�𝑡𝑡2||𝐶𝐶𝐶𝐶𝑖𝑖1�,  𝑦𝑦𝑖𝑖�. 
• Robustness 

Scenario 7. The proposed scheme achieves the robustness.  
Proof The proposed scheme does not rely on any trusted third party, and the duty of LHC is 

only to verify the patient’s message and aggregate the health data in a specific area. Therefore, 
anyone, who has the knowledge of 𝑞𝑞1, can verify the message from the patients, and extract 
the aggregated result. As a result, the trust bottleneck is eliminated, so that the robustness is 
achieved in the proposed scheme. 

Moreover, the security features of the proposed scheme are compared with several works 
[10, 13, 14], and the comparison is demonstrated in Table 2. 

4.2 Performance Evaluation 
We mainly compare the aggregation performance of the proposed scheme with the related 
works in [10, 13, 14]. Assume there exists 𝑛𝑛 patients in the specific area. We only count the 
expensive computation, such as modular multiplication, modular exponentiation, Pollard’s 
lambda method, Paillier cryptosystem decryption, and pairing operation. In addition, the time 
cost for the related computations is listed in Table 3, and 𝑇𝑇𝑒𝑒 ≈ 𝑇𝑇𝑝𝑝𝑝𝑝 ≈ 1.5𝑇𝑇𝑝𝑝𝑝𝑝 [13]. 

As for the aggregation efficiency, the comparison result is shown in Table 4. Obviously, the 
aggregation efficiency of the proposed scheme is comparable to that of Li et al.’s scheme [10] 
and He et al.’s scheme [14], and it is higher than that of Fan et al.’s scheme [13]. 

 
Table 3. Notation for time cost 

Notation Definition 
𝑇𝑇𝑒𝑒 Modular exponentiation computation time cost. 
𝑇𝑇𝑚𝑚 Modular multiplication computation time cost. 
𝑇𝑇𝑝𝑝𝑝𝑝 Pollard’s lambda method time cost. 
𝑇𝑇𝑝𝑝𝑝𝑝 Paillier cryptosystem decryption time cost. 
𝑇𝑇𝑝𝑝𝑝𝑝 Pairing operation time cost. 

 
Table 4. Time cost comparison of aggregation 

 𝒏𝒏 users (patients) LHC(Aggregator) Total 
Our scheme 2𝑛𝑛𝑇𝑇𝑒𝑒 + 𝑛𝑛𝑇𝑇𝑚𝑚 𝑇𝑇𝑒𝑒 + (𝑛𝑛 − 1)𝑇𝑇𝑚𝑚 + 𝑇𝑇𝑝𝑝𝑝𝑝 (2𝑛𝑛 + 1)𝑇𝑇𝑒𝑒 + (2𝑛𝑛 − 1)𝑇𝑇𝑚𝑚 + 𝑇𝑇𝑝𝑝𝑝𝑝 

Li et al.’s 
scheme [10] 2𝑛𝑛𝑇𝑇𝑒𝑒 + 𝑛𝑛𝑇𝑇𝑚𝑚 (𝑛𝑛 − 1)𝑇𝑇𝑚𝑚 + 𝑇𝑇𝑝𝑝𝑝𝑝 2𝑛𝑛𝑛𝑛𝑒𝑒 + (2𝑛𝑛 − 1)𝑇𝑇𝑚𝑚 + 𝑇𝑇𝑝𝑝𝑝𝑝 

Fan et al.’s 
scheme [13] 3𝑛𝑛𝑇𝑇𝑒𝑒 + 2𝑛𝑛𝑇𝑇𝑚𝑚 3𝑇𝑇𝑒𝑒 + 𝑛𝑛𝑇𝑇𝑚𝑚 + 𝑇𝑇𝑝𝑝𝑝𝑝  (3𝑛𝑛 + 3)𝑇𝑇𝑒𝑒 + 3𝑛𝑛𝑇𝑇𝑚𝑚 + 𝑇𝑇𝑝𝑝𝑝𝑝 

He et al.’s 
scheme [14] 2𝑛𝑛𝑇𝑇𝑒𝑒 + 𝑛𝑛𝑇𝑇𝑚𝑚 𝑇𝑇𝑒𝑒 + 𝑛𝑛𝑇𝑇𝑚𝑚 + 𝑇𝑇𝑝𝑝𝑝𝑝 (2𝑛𝑛 + 1)𝑇𝑇𝑒𝑒 + 2𝑛𝑛𝑇𝑇𝑚𝑚 + 𝑇𝑇𝑝𝑝𝑝𝑝 

 

4.3 Utility Analysis 
Suppose the aggregation operation involves 𝑛𝑛 patients in the designated area, the approximate 
aggregated result is ∑ 𝑚𝑚𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1 − ⌈𝑛𝑛𝑤𝑤𝑛𝑛 2⁄ ⌉, and the overall relative error is denoted as 
𝐸𝐸(𝛾𝛾) = |∑ 𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1 − ⌈𝑛𝑛𝑤𝑤𝑛𝑛 2⁄ ⌉| ∑ 𝑚𝑚𝑖𝑖
𝑛𝑛
𝑖𝑖=1⁄ . When the interval of the added noise is smaller, the 

relative error thus is also smaller. Moreover, 𝐸𝐸(𝛾𝛾) is regarded as a binary function of the 
security parameters 𝜀𝜀 and 𝛿𝛿, and 𝐸𝐸(𝛾𝛾) is roughly reduced if 𝜀𝜀 and 𝛿𝛿 increase simultaneously. 
Therefore, we can choose the proper 𝜀𝜀, 𝛿𝛿 and 𝐸𝐸(𝛾𝛾) to balance the security and the usability. 
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In order to achieve the tradeoff between security and usability, we can roughly determine 𝜀𝜀 

and 𝛿𝛿 due to a given relative error 𝐸𝐸(𝛾𝛾). For simplicity, when 𝑛𝑛 = 3000, 𝛥𝛥 = 5, ∑ 𝑚𝑚𝑖𝑖
3000
𝑖𝑖=1 =

7500 and 𝑛𝑛 = 6000, 𝛥𝛥 = 5, ∑ 𝑚𝑚𝑖𝑖
6000
𝑖𝑖=1 = 15000, the binary function 𝐸𝐸(𝛾𝛾) with respect to 𝜀𝜀 

and 𝛿𝛿 are shown in Fig. 3 (a) and Fig. 3 (b), respectively. In Fig. 3 (a), if 𝐸𝐸(𝛾𝛾) = 0.05, the 
rough parameters are determined, i.e., 𝜀𝜀 = 0.3, 𝛿𝛿 = 0.03. Meanwhile, 𝜀𝜀 = 0.5, 𝛿𝛿 = 0.05 can 
also be determined when 𝐸𝐸(𝛾𝛾) = 0.01 in Fig. 3 (b). In Fig. 4, 200 experiments show that 
almost all the relative errors fall in the pre-determined interval [0, 0.05] with 𝑛𝑛 = 3000, 𝜀𝜀 =
0.3, 𝛿𝛿 = 0.03,𝛥𝛥 = 5, ∑ 𝑚𝑚𝑖𝑖

3000
𝑖𝑖=1 = 7500, and [0, 0.01] with 𝑛𝑛 = 6000, 𝜀𝜀 = 0.5, 𝛿𝛿 = 0.05, 

𝛥𝛥 = 5, ∑ 𝑚𝑚𝑖𝑖
6000
𝑖𝑖=1 = 15000. It suggests that the interval of |∑ 𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1 − ⌈𝑛𝑛𝑤𝑤𝑛𝑛 2⁄ ⌉| is relatively 
stable and small for the aggregated expectation ∑ 𝑚𝑚𝑖𝑖

𝑛𝑛
𝑖𝑖=1  with the proper security parameters. 

As a result, before implementing the proposed scheme, we can determine the proper 
parameters 𝜀𝜀, 𝛿𝛿 and 𝐸𝐸(𝛾𝛾) to balance the security and the utility. 

5. Conclusion 
Based on the differential privacy and the subgroup decision assumption, we propose a 

privacy-preserving health data aggregation scheme. In the proposed scheme, the local 
healthcare center can aggregate the health data of the patients in a specific area without leaking 
the individual one. Moreover, the proposed scheme not only resists against the well known 
attacks, such as external attack, internal attack, impersonation attack, modification attack, and 
replay attack, but also overcomes the new HDA attack. Therefore, the privacy is preserved. 
Notably, no trusted third party is needed in the proposed scheme, such that there exists no trust 
bottleneck, and thus the robustness is achieved. Hence, the proposed scheme is more practical. 

 

  
Fig. 4. Relative error. (a) 200 experiments when 𝑛𝑛 = 3000, 𝜀𝜀 = 0.3, 𝛿𝛿 = 0.03,𝛥𝛥 = 5, and ∑ 𝑚𝑚𝑖𝑖

3000
𝑖𝑖=1 =

7500. (b) 200 experiments when 𝑛𝑛 = 6000, 𝜀𝜀 = 0.5, 𝛿𝛿 = 0.05, 𝛥𝛥 = 5, and ∑ 𝑚𝑚𝑖𝑖
6000
𝑖𝑖=1 = 15000. 
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