KSII Transactions on Internet and Information Systems (TIIS)
/
제16권3호
/
pp.1028-1046
/
2022
Genome-wide association studies (GWAS) aim to find the significant genetic variants for common complex disease. However, genotype data has privacy information such as disease status and identity, which make data sharing and research difficult. Differential privacy is widely used in the privacy protection of data sharing. The current differential privacy approach in GWAS pays no attention to raw data but to statistical data, and doesn't achieve equilibrium between utility and privacy, so that data sharing is hindered and it hampers the development of genomics. To share data more securely, we propose a differential privacy preserving approach of data sharing for GWAS, and achieve the equilibrium between privacy and data utility. Firstly, a reasonable disturbance interval for the genotype is calculated based on the expected utility. Secondly, based on the interval, we get the Nash equilibrium point between utility and privacy. Finally, based on the equilibrium point, the original genotype matrix is perturbed with differential privacy, and the corresponding random genotype matrix is obtained. We theoretically and experimentally show that the method satisfies expected privacy protection and utility. This method provides engineering guidance for protecting GWAS data privacy.
차분 프라이버시는 데이터 프라이버시를 보존함과 동시에 데이터를 수집 및 분석할 수 있는 기법으로써 프라이버시 보존형 데이터 활용 분야에서 널리 적용되고 있다. 이러한 차분 프라이버시의 지역적 모델인 로컬 차분 프라이버시 알고리즘은 무작위 응답을 기반으로 데이터 소유자가 직접 데이터를 가공 처리하여 공개한다. 따라서 개인은 데이터 프라이버시를 보장받을 수 있으며, 데이터 분석가는 수집된 다수의 데이터를 통해 유용한 통계적 결과값을 도출할 수 있다. 이러한 로컬 차분 프라이버시 기법은 세계적 기업인 Google, Apple, Microsoft에서 실질적으로 사용자의 데이터를 수집 및 분석할 때 활용되고 있다. 본 논문에서는 현실에 실질적으로 활용되고 있는 로컬 차분 프라이버시 기법에 대해 비교분석한다. 또한, 실제 적용 사례 연구로써 개인의 프라이버시가 결과의 신뢰성에 큰 영향을 미치는 설문 및 여론조사 시나리오를 기반으로 로컬 차분 프라이버시 기법을 적용하여 현실에서의 활용 가능성에 대해 연구한다.
We briefly review the problem of statistical disclosure control under differential privacy model, which entails a formal and ad omnia privacy guarantee separating the utility of the database and the risk due to individual participation. It has born fruitful results over the past ten years, both in theoretical connections to other fields and in practical applications to real-life datasets. Promises of differential privacy help to relieve concerns of privacy loss, which hinder the release of community-valuable data. This paper covers main ideas behind differential privacy, its interactive versus non-interactive settings, perturbation mechanisms, and typical applications found in recent research.
최근 의료분야에서 대용량 의료정보의 이차적인 활용에 관심이 대두되고 있다. 대용량 의료정보의 경우 질병에 대한 연구나 예방 등에 활용되어 의료분야의 발전에 기여할 수 있는 유용한 정보이다. 그러나 개인정보보호법이나 의료법 등으로 인해, 의료정보는 환자나 의료진 등의 개인정보를 포함하고 있기 때문에 이차적인 활용에 많은 제한이 발생한다. 이러한 문제를 해결하기 위해 현재까지 k-익명성[1], l-다양성[2], 그리고 차분 프라이버시[3] 등 다양한 방법들이 제안되어 왔다. 본 논문에서는 지금까지 연구된 다양한 방법들 중 라플라스 노이즈를 이용한 그리고 이전에 제안된 차분 프라이버시 방법들의 문제점들에 대해 논의해보고자 한다. 끝으로 우리는 분석가들로부터의 질의에 대한 응답을 확인하기 위해 주어진 데이터 집합의 마지막 컬럼에 1 비트의 상태필드를 추가하여 기존의 문제점을 해결하는 새로운 방법에 대해 제안해 보고자 한다.
Jun Yan;Jiawang Chen;Yihui Zhou;Zhenqiang Wu;Laifeng Lu
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권1호
/
pp.147-169
/
2024
In pace with the development of network technology at lightning speed, social networks have been extensively applied in our lives. However, as social networks retain a large number of users' sensitive information, the openness of this information makes social networks vulnerable to attacks by malicious attackers. To preserve the link privacy of individuals in social networks, an uncertain graph method based on node random response is devised, which satisfies differential privacy while maintaining expected data utility. In this method, to achieve privacy preserving, the random response is applied on nodes to achieve edge modification on an original graph and node differential privacy is introduced to inject uncertainty on the edges. Simultaneously, to keep data utility, a divide and conquer strategy is adopted to decompose the original graph into many sub-graphs and each sub-graph is dealt with separately. In particular, only some larger sub-graphs selected by the exponent mechanism are modified, which further reduces the perturbation to the original graph. The presented method is proven to satisfy differential privacy. The performances of experiments demonstrate that this uncertain graph method can effectively provide a strict privacy guarantee and maintain data utility.
연합학습은 클라이언트가 중앙 서버에 원본 데이터를 주지 않고도 학습할 수 있도록 설계된 분산된 머신러닝 방법이다. 그러나 클라이언트와 중앙 서버 사이에 모델 업데이트 정보를 공유한다는 점에서 여전히 추론 공격(Inference Attack)과 오염 공격(Poisoning Attack)의 위험에 노출되어 있다. 이러한 공격을 방어하기 위해 연합학습에 차분프라이버시(Differential Privacy)를 적용하는 방안이 연구되고 있다. 차분 프라이버시는 데이터에 노이즈를 추가하여 민감한 정보를 보호하면서도 유의미한 통계적 정보 쿼리는 공유할 수 있도록 하는 기법으로, 노이즈를 추가하는 위치에 따라 전역적 차분프라이버시(Global Differential Privacy)와 국소적 차분 프라이버시(Local Differential Privacy)로 나뉜다. 이에 본 논문에서는 차분 프라이버시를 적용한 연합학습의 최신 연구 동향을 전역적 차분 프라이버시를 적용한 방향과 국소적 차분 프라이버시를 적용한 방향으로 나누어 검토한다. 또한 이를 세분화하여 차분 프라이버시를 발전시킨 방식인 적응형 차분 프라이버시(Adaptive Differential Privacy)와 개인화된 차분 프라이버시(Personalized Differential Privacy)를 응용하여 연합학습에 적용한 방식들에 대하여 특징과 장점 및 한계점을 분석하고 향후 연구방향을 제안한다.
많은 응용프로그램들로부터 양질의 서비스를 제공받기 위해서 데이터 공개는 필수적이다. 하지만 원본 데이터를 그대로 공개할 경우 개인의 민감한 정보(정치적 성향, 질병 등)가 드러날 위험이 있기 때문에 원본 데이터가 아닌 재현 데이터를 생성하여 공개함으로써 프라이버시를 보존하는 많은 연구들이 제안되어왔다. 그러나 단순히 재현 데이터를 생성하여 공개하는 것은 여러 공격들(연결공격, 추론공격 등)에 의해 여전히 프라이버시 유출 위험이 존재한다. 본 논문에서는 이러한 민감한 정보의 유출을 방지하기 위해, 재현 데이터 생성 모델로 주목받고 있는 GAN에 최신 프라이버시 보호 기술인 차분 프라이버시를 적용하여 프라이버시가 보존되는 재현 데이터 생성 알고리즘을 제안한다. 생성 모델은 레이블이 있는 데이터의 효율적인 학습을 위해 CGAN을 사용하였고, 데이터의 유용성 측면을 고려하여 기존 차분 프라이버시보다 프라이버시가 완화된 Rényi 차분 프라이버시를 적용하였다. 그리고 생성된 데이터의 유용성에 대한 검증을 다양한 분류기를 통해 실시하고 비교분석하였다.
최근 대용량 의료정보의 이차적인 활용에 대한 관심과 함께 의료정보 내의 개인정보에 대한 프라이버시 침해 문제에 대한 관심 또한 대두되고 있다. 대용량 의료정보의 경우 질병 연구, 예방 등 다양한 분야에서 활용될 수 있는 매우 유용한 정보이다. 이러한 대용량 의료정보의 경우 환자, 의료인 등에 대한 개인정보를 포함하고 있기 때문에 개인정보보호법과 같은 프라이버시 관련 법률에 저촉되어 활용에 많은 제한이 존재한다. 현재까지 k-익명성, l-다양성, 디퍼렌셜 프라이버시 등 의료정보 내의 개인정보를 보호하면서 대용량 의료정보의 이차적인 활용을 가능하게 하는 다양한 방법들이 개발되어 활용되어오고 있다. 본 논문에서는 지금까지 개발된 다양한 방법들 중 디퍼렌셜 프라이버시의 처리 절차에 대해 알아보고 라플라스 노이즈를 사용하는 디퍼렌셜 프라이버시가 가지고 있는 문제점들에 대해 알아본다. 또한 AES와 같은 대칭키 암호화 알고리즘과 Shamir의 비밀 분산 기법을 이용하여 이에 대한 해결책을 새롭게 제안한다.
온라인상에 축적되는 디지털 데이터의 양은 폭발적으로 증가하고 있으며 이러한 데이터들은 매우 큰 잠재적 가치를 갖고 있다. 국가 및 기업들은 방대한 양의 데이터로부터 다양한 부가가치를 창출하고 있으며 데이터 분석 기술에 많은 투자를 하고 있다. 그러나 데이터 분석에서 발생하는 프라이버시 문제는 데이터의 활용을 저해하는 큰 요인으로 작용하고 있다. 최근 신경망 모델 기반의 분석 기술에 대한 프라이버시 침해 공격들이 제안됨에 따라 프라이버시를 보존하는 인공 신경망 기술에 대한 연구가 요구되고 있다. 이에 따라 엄격한 프라이버시를 보장하는 차분 프라이버시 분야에서 다양한 프라이버시 보존형 인공 신경망 기술에 대한 연구가 수행되고 있지만, 신경망 모델의 정확도와 프라이버시 보존 강도 사이의 균형이 적절하지 않은 문제점이 있다. 본 논문에서는 프라이버시와 모델의 성능을 모두 보존하고 모델 전도 공격에 저항성을 갖는 차분 프라이버시 기술을 제안한다. 또한, 프라이버시 보존 강도에 따른 모델전도 공격의 저항성을 분석한다.
현대의 인공지능은 사회를 구성하는 필수적인 기술로 여겨지고 있다. 특히, 인공지능에서 프라이버시 침해 문제는 현대 사회에서 심각한 문제로 자리 잡고 있다. 개인정보보호를 위해 2019년 MIT에서 제안된 분할 학습은 연합 학습의 기술 중 하나로 개인정보보호 효과를 지닌다. 본 연구에서는 데이터를 안전하게 관리하기 위해 알려진 차분 프라이버시를 이용하여 안전하고 정확한 분할 학습 모델을 연구한다. 또한, SVHN과 GTSRB 데이터 세트를 15가지의 차등적인 차분 프라이버시를 적용한 분할 학습 모델에 학습시키고 학습이 안정적으로 되는지를 확인한다. 최종적으로, 학습 데이터 추출 공격을 진행하여, 공격을 예방하는 차분 프라이버시 예산을 MSE를 통해 정량적으로 도출한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.