• Title/Summary/Keyword: Differential expressed genes

Search Result 229, Processing Time 0.038 seconds

Comparative Analysis of Gene Expression in the Female Reproductive Organs

  • Kim, Min-Goo;Seo, Hee-Won;Choi, Yo-Han;Lee, Chang-Kyu;Ka, Hak-Hyun
    • Journal of Embryo Transfer
    • /
    • v.24 no.2
    • /
    • pp.77-87
    • /
    • 2009
  • To understand molecular and cellular mechanisms of many gene products in the female reproductive organs including the ovary and uterine endometrium as well as during embryo development, researchers have developed and utilized many effective methodologies to analyze gene expression in cells, tissues and animals over the last several decades. For example, blotting techniques have helped to understand molecular functions at DNA, RNA and protein levels, and the reverse transcription-polymerase chain reaction (RT-PCR) method has been widely used in gene expression analysis. However, some conventional methods are not sufficient to understand regulation and function of genes expressed in very complex patterns in many organs. Thus, it is required to adopt more high-throughput and reliable techniques. Here, we describe several techniques used widely recently to analyze gene expression, including annealing control based-PCR, differential display-PCR, expressed sequence tag, suppression subtractive hybridization and microarray techniques. Use of these techniques will help to analyze expression pattern of many genes from small scale to large scale and to compare expression patterns of genes in one sample to another. In this review, we described principles of these methodologies and summarized examples of comparative analysis of gene expression in female reproductive organs with help of those methodologies.

Differential Expression of Hox and Notch Genes in Larval and Adult Stages of Echinococcus granulosus

  • Dezaki, Ebrahim Saedi;Yaghoobi, Mohammad Mehdi;Taheri, Elham;Almani, Pooya Ghaseminejad;Tohidi, Farideh;Gottstein, Bruno;Harandi, Majid Fasihi
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • This investigation aimed to evaluate the differential expression of HoxB7 and notch genes in different developmental stages of Echinococcus granulosus sensu stricto. The expression of HoxB7 gene was observed at all developmental stages. Nevertheless, significant fold differences in the expression level was documented in the juvenile worm with 3 or more proglottids, the germinal layer from infected sheep, and the adult worm from an experimentally infected dog. The notch gene was expressed at all developmental stages of E. granulosus; however, the fold difference was significantly increased at the microcysts in monophasic culture medium and the germinal layer of infected sheep in comparison with other stages. The findings demonstrated that the 2 aforementioned genes evaluated in the present study were differentially expressed at different developmental stages of the parasite and may contribute to some important biological processes of E. granulosus.

Identification of An Antibacterial Gene by Differential Display from Lipopolysaccharide-Stimulated Dung Beetle, Copris tripartitus

  • Suh, Hwa-Jin;Kim, Yeon-Ju;Bang, Hea-Son;Yun, Eun-Young;Kim, Seong-Ryul;Park, Kwan-Ho;Kang, Bo-Ram;Kim, Ik-Soo;Jeon, Jae-Pil;Hwang, Jae-Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.2
    • /
    • pp.223-228
    • /
    • 2008
  • A novel beetle antimicrobial protein from stimulated Copris tripartitus and the corresponding gene were isolated in parallel through differential display-PCR and expression in Escherichia coli. To find cDNA clones responsible for bacteria resistance, the suppression subtractive hybridization and GeneFishing differentially expressed genes system were employed in the dung beetle, Copris tripartitus immunized with lipopolysaccaride. One cDNA clone from eight subtracted clones was selected through dot blot analysis and confirmed by northern blot analysis. The 516-bp, selected cDNA clone was determined by 5' and 3' rapid amplication of cDNA ends and cloned into the GST fusion expression vector pGEX-4T-1 for expression of the protein. The expressed protein was predicted 14.7 kDa and inhibited the growth of gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa. These results implied that the expressed protein is related to immune defense mechanism against microorganism.

Isolation and Elucidation of Specific RNAs by Treatment of Rhus verniciflua Stokes Extract to U937 Cell (옻추출물 처리에 의한 U937 세포에서의 특정 RNA 발현 양상)

  • Jeong, Mi-Young;Oh, Se-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.593-598
    • /
    • 2008
  • Differential display RT-PCR was used for screening the differentially expressed specific genes by Rhus verniciflua extract treatment to U937 cell, human leukemic monocyte. As a result, 19 clones differentially expressed were detected. Among the detected clones, one clone was confirmed to be over-expressed by R. verniciflua extract treatment in Northern blot analysis. Nucleotide sequence of the clone showed 100% homology with H2A histone family member Z gene. Therefore, it is concluded that the treatment of R. verniciflua extract to U937 cell specifically induces the expression of H2A.Z gene but its role should be elucidated by future works.

Gene Expression Profile of T-cell Receptors in the Synovium, Peripheral Blood, and Thymus during the Initial Phase of Collagen-induced Arthritis

  • Kim, Ji-Young;Lim, Mi-Kyoung;Sheen, Dong-Hyuk;Kim, Chan;Lee, So-Young;Park, Hyo;Lee, Min-Ji;Lee, Sang-Kwang;Yang, Yun-Sik;Shim, Seung-Cheol
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.258-267
    • /
    • 2011
  • Background: Current management strategies attempt to diagnose rheumatoid arthritis (RA) at an early stage. Transcription profiling is applied in the search for biomarkers for detecting early-stage disease. Even though gene profiling has been reported using several animal models of RA, most studies were performed after the development of active arthritis, and conducted only on the peripheral blood and joint. Therefore, we investigated gene expression during the initial phase of collagen-induced arthritis (CIA) before the arthritic features developed in the thymus in addition to the peripheral blood and synovium. Methods: For gene expression analysis using cDNA microarray technology, samples of thymus, blood, and synovium were collected from CIA, rats immunized only with type II collagen (Cll), rats immunized only with adjuvant, and unimmunized rats on days 4 and 9 after the first immunization. Arrays were scanned with an Illumina bead array. Results: Of the 21,910 genes in the array, 1,243 genes were differentially expressed at least 2-fold change in various organs of CIA compared to controls. Among the 1,243 genes, 8 encode T-cell receptors (TCRs), including CD3${\zeta}$, CD3${\delta}$, CD3${\varepsilon}$, CD8${\alpha}$, and CD8${\beta}$ genes, which were down-regulated in CIA. The synovium was the organ in which the genes were differentially expressed between CIA and control group, and no difference were found in the thymus and blood. Further, we determined that the differential expression was affected by adjuvant more than Cll. The differential expression of genes as revealed by real-time RT-PCR, was in agreement with the microarray data. Conclusion: This study provides evidence that the genes encoding TCRs including CD3${\zeta}$, CD3${\delta}$, CD3${\varepsilon}$, CD8${\alpha}$, and CD8${\beta}$ genes were down-regulated during the initial phase of CIA in the synovium of CIA. In addition, adjuvant played a greater role in the down-regulation of the CD3 complex compared to CII. Therefore, the down-regulation of TCR gene expression occurred dominantly by adjuvant could be involved in the pathogenesis of the early stage at CIA.

Paradigm of Time-sequence Development of the Intestine of Suckling Piglets with Microarray

  • Sun, Yunzi;Yu, Bing;Zhang, Keying;Chen, Xijian;Chen, Daiwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1481-1492
    • /
    • 2012
  • The interaction of the genes involved in intestinal development is the molecular basis of the regulatory mechanisms of intestinal development. The objective of this study was to identify the significant pathways and key genes that regulate intestinal development in Landrace piglets, and elucidate their rules of operation. The differential expression of genes related to intestinal development during suckling time was investigated using a porcine genome array. Time sequence profiles were analyzed for the differentially expressed genes to obtain significant expression profiles. Subsequently, the most significant profiles were assayed using Gene Ontology categories, pathway analysis, network analysis, and analysis of gene co-expression to unveil the main biological processes, the significant pathways, and the effective genes, respectively. In addition, quantitative real-time PCR was carried out to verify the reliability of the results of the analysis of the array. The results showed that more than 8000 differential expression transcripts were identified using microarray technology. Among the 30 significant obtained model profiles, profiles 66 and 13 were the most significant. Analysis of profiles 66 and 13 indicated that they were mainly involved in immunity, metabolism, and cell division or proliferation. Among the most effective genes in these two profiles, CN161469, which is similar to methylcrotonoyl-Coenzyme A carboxylase 2 (beta), and U89949.1, which encodes a folate binding protein, had a crucial influence on the co-expression network.

cDNA Microarray Analysis of the Differential Gene Expression in the Neuropathic Pain and Electroacupuncture Treatment Models

  • Ko, Je-Sang;Na, Doe-Sun;Lee, Young-Han;Shin, Soon-Young;Kim, Ji-Hoon;Hwang, Byung-Gil;Min, Byung-Il;Park, Dong-Suk
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.420-427
    • /
    • 2002
  • Partial nerve injury is the main cause of neuropathic pain disorders in humans. Acupuncture has long been used to relieve pain. It is known to relieve pain by controlling the activities of the autonomic nervous system. Although the mechanism of neuropathic pain and analgesic effects of electroacupuncture (EA) have been studied in a rat model system, its detailed mechanism at the molecular level remains unclear. To identify genes that might serve as either markers or explain these distinct biological functions, a cDNA microarray analysis was used to compare the expression of 8,400 genes among three sample groups. Messenger RNAs that were pooled from the spinal nerves of 7 normal. 7 neuropathic pain, and 7 EA treatment rat models were compared. Sixty-eight genes were differentially expressed more than 2-fold in the neuropathic rat model when compared to the normal, and restored to the normal expression level after the EA treatment. These genes are involved in a number of biological processes, including the signal transduction, gene expression, and nociceptive pathways. Confirmation of the differential gene expression was performed by a dot-blot analysis. Dot-blotting results showed that the opioid receptor sigma was among those genes. This indicates that opioid-signaling events are involved in neuropathic pain and the analgesic effects of EA. The potential application of these data include the identification and characterization of signaling pathways that are involved in the EA treatment, studies on the role of the opioid receptor in neuropathic pain, and further exploration on the role of selected identified genes in animal models.

TGF-β Signaling and miRNAs Targeting for BMP7 in the Spleen of Two Necrotic Enteritis-Afflicted Chicken Lines

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • Transforming growth factor beta ($TGF-{\beta}$) signaling pathways are involved in the regulation of proliferation, differentiation, immunity, survival, and apoptosis of many cells. The aim of this study was to investigate the differential expression of $TGF-{\beta}$-related genes, and their interactions and regulators in the spleen of two genetically disparate chicken lines (Marek's disease resistant line 6.3 and Marek's disease-susceptible line 7.2) induced with necrotic enteritis (NE) by Eimeria maxima and Clostridium perfringens infection. By using high-throughput RNA-sequencing, we investigated 76 $TGF-{\beta}$-related genes that were significantly and differentially expressed in the spleens of the chickens. Approximately 20 $TGF-{\beta}$ pathway genes were further verified by qRT-PCR, and the results were consistent with our RNA sequencing data. All 76 identified genes were analyzed through Gene Ontology and mapped onto the KEGG chicken $TGF-{\beta}$ pathway. Our results demonstrated that several key genes, including $TGF-{\beta}$1-3, bone morphogenetic proteins (BMP)1-7, inhibitor of differentiation (ID) proteins ID1-3, SMAD1-9, and Jun, showed a markedly differential expression between the two chicken lines, relative to their respective controls. We then further predicted 24 known miRNAs that targeted BMP7 mRNA from 139 known miRNAs in the two chicken lines. Among these, six miRNAs were measured by qRT-PCR. In conclusion, this study is the first to analyze most of the genes, interactions, and regulators of the $TGF-{\beta}$ pathway in the innate immune responses of NE afflicted chickens.

EFFECT OF NEGATIVE FEEDBACK LOOP WITH NRF1 AND MIR-378 OF NONALCOHOLIC FATTY LIVER DISEASE: A MATHEMATICAL MODELING APPROACH

  • Lee, SiEun;Shin, Kiyeon
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.365-376
    • /
    • 2020
  • Nonalcoholic fatty liver is a type of fatty liver in which fat accumulates in the liver without alcohol. In the accumulation, Nrf1 and miR-378 genes play very important role, so called negative feedback loop, in which the two genes suppress the other's production. In other words, Nrf1 activates fatty acid oxidation which promotes fat consumption in the liver, while miR-378 deactivates fatty acid oxidation. Thus, both genes regulate nonalcoholic fatty liver. In this paper, the negative feedback loop of Nrf1 and miR-378 are expressed by a system of ordinary differential equations. And, bifurcation simulation shows the change in the amount of each gene with significant parameter range changes. Bifurcation simulation has also used to determine the thresholds for transit between disease and steady state.

Differential Expression of Three Catalase Genes in the Small Radish (Rhaphanus sativus L. var. sativus)

  • Kwon, Soon Il;Lee, Hyoungseok;An, Chung Sun
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2007
  • Three catalase cDNA clones were isolated from the small radish (Raphanus sativus L.). Their nucleotide and deduced amino acid sequences showed the greatest homology to those of Arabidopsis. Genomic Southern blot analysis, using RsCat1 cDNA as a probe, showed that catalases are encoded by small multigene family in the small radish. Nondenaturing polyacrylamide gels revealed the presence of several catalase isozymes, the levels of which varied among the organs examined. The isozyme activities were assigned the individual catalase genes by Northern analysis using total RNA from different organs. The three catalase genes were differentially expressed in response to treatments such as white light, xenobiotics, osmoticum, and UV. Their expression in seedlings was controlled by the circadian clock under a light/dark cycle and/or in constant light. Interestingly, RsCat1 transcripts peaked in the morning, while those of RsCat2 and RsCat3 peaked in the early evening. Our results suggest that the RsCat enzymes are involved in defense against the oxidative stress induced by environmental changes.