• Title/Summary/Keyword: Differential cross section

Search Result 164, Processing Time 0.025 seconds

Differential transform method for free vibration analysis of a moving beam

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.645-658
    • /
    • 2010
  • In this study, the Differential Transform Method (DTM) is employed in order to solve the governing differential equation of a moving Bernoulli-Euler beam with axial force effect and investigate its free flexural vibration characteristics. The free vibration analysis of a moving Bernoulli-Euler beam using DTM has not been investigated by any of the studies in open literature so far. At first, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Bernoulli-Euler beam theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equation of the motion. The calculated natural frequencies of the moving beams with various combinations of boundary conditions using DTM are tabulated in several tables and are compared with the results of the analytical solution where a very good agreement is observed.

An inverse approach for the calculation of flexibility coefficient of open-side cracks in beam type structures

  • Fallah, N.;Mousavi, M.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.285-297
    • /
    • 2012
  • An inverse approach is presented for calculating the flexibility coefficient of open-side cracks in the cross sectional of beams. The cracked cross section is treated as a massless rotational spring which connects two segments of the beam. Based on the Euler-Bernoulli beam theory, the differential equation governing the forced vibration of each segment of the beam is written. By using a mathematical manipulation the time dependent differential equations are transformed into the static substitutes. The crack characteristics are then introduced to the solution of the differential equations via the boundary conditions. By having the time history of transverse response of an arbitrary location along the beam, the flexibility coefficient of crack is calculated. The method is applied for some cracked beams with solid rectangular cross sections and the results obtained are compared with the available data in literature. The comparison indicates that the predictions of the proposed method are in good agreement with the reported data. The procedure is quite general so as to it can be applicable for both single-side crack and double-side crack analogously. Hence, it is also applied for some test beams with double-side cracks.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles (자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰)

  • Lee, Il Kwon;Moon, Hak Hoon;Youm, Kwang Wook
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis

  • Qiuyang Cheng;H. Elhosiny Ali;Ibrahim Albaijan
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.215-228
    • /
    • 2023
  • The vibrational behavior of nanoelements is critical in determining how a nanostructure behaves. However, combining vibrational analysis with stability analysis allows for a more comprehensive knowledge of a structure's behavior. As a result, the goal of this research is to characterize the behavior of nonlocal nanocyndrical beams with uniform and nonuniform cross sections. The nonuniformity of the beams is determined by three distinct section functions, namely linear, convex, and exponential functions, with the length and mass of the beams being identical. For completely clamped, fully pinned, and cantilever boundary conditions, Eringen's nonlocal theory is combined with the Timoshenko beam model. The extended differential quadrature technique was used to solve the governing equations in this research. In contrast to the other boundary conditions, the findings of this research reveal that the nonlocal impact has the opposite effect on the frequency of the uniform cantilever nanobeam. Furthermore, since the mass of the materials employed in these nanobeams is designed to remain the same, the findings may be utilized to help improve the frequency and buckling stress of a resonator without requiring additional material, which is a cost-effective benefit.

Free Vibrations of Clamped Circular Arches with Linear Variable Cross-Section (1차원 변화단면을 갖는 양단고정 원호아치의 자유진동 해석)

  • Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 1989
  • The main purpose of the present paper is to present both the fundamental frequency and some higher free vibration frequencies for circular arches with variable section, in which rotatory inertia is included. The differential equations are derived for the in-plan free vibration of elastic circular arches with variable section. These equations were solved numerically for the linear variable circular cross-section with clamped-clamped end constraint. As the numerical results, the four lowest nondimensional natural frequencies presented as functions of the nondimensional system parameters : the end moment of inertia to crown moment of inertia ratio, the slenderness ratio, and the opening angle. The effect of rotatory inertia on the nondimensional natural frequency is also reported.

  • PDF

Buckling Loads and Post-Buckling Behavio of Cantilever Column with Constant Volume (일정체적 캔틸레버 기둥의 좌굴하중 및 후좌굴 거동)

  • Lee Seung-Woo;Lee Tae-Eun;Kim Gwon-Sik;Lee Byoung-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.935-940
    • /
    • 2006
  • Numerical methods are developed for solving the elastica and buckling load of cantilever column with constant volume, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the horizontal deflection at free end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF

Stability of multi-step flexural-shear plates with varying cross-section

  • Xu, J.Y.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.597-612
    • /
    • 2003
  • In this paper, multi-story buildings with shear-wall structures and with narrow rectangular plane configuration are modeled as a multi-step flexural-shear plate with varying cross-section for buckling analysis. The governing differential equation of such a plate is established. Using appropriate transformations, the equation is reduced to analytically solvable equations by selecting suitable expressions of the distribution of stiffness. The exact solutions for buckling of such a one-step flexural-shear plate with variable stiffness are derived for several cases. A new exact approach that combines the transfer matrix method and closed from solution of one-step flexural-shear plate with continuously varying stiffness is presented for stability analysis of multi-step non-uniform flexural-shear plate. A numerical example shows that the present methods are easy to implement and efficient.

Hierarchical theories for a linearised stability analysis of thin-walled beams with open and closed cross-section

  • Giunta, Gaetano;Belouettar, Salim;Biscani, Fabio;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.253-271
    • /
    • 2014
  • A linearised buckling analysis of thin-walled beams is addressed in this paper. Beam theories formulated according to a unified approach are presented. The displacement unknown variables on the cross-section of the beam are approximated via Mac Laurin's polynomials. The governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the expansion order. Classical beam theories such as Euler-Bernoulli's and Timoshenko's can be retrieved as particular cases. Slender and deep beams are investigated. Flexural, torsional and mixed buckling modes are considered. Results are assessed toward three-dimensional finite element solutions. The numerical investigations show that classical and lower-order theories are accurate for flexural buckling modes of slender beams only. When deep beams or torsional buckling modes are considered, higher-order theories are required.