• Title/Summary/Keyword: Differential and Algebraic Equations

Search Result 135, Processing Time 0.022 seconds

A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams

  • Pan, Danguang;Chen, Genda;Lou, Menglin
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.689-703
    • /
    • 2011
  • A new perturbation method is introduced to study the undamped free vibration of a non-prismatic Timoshenko beam for its natural frequencies and vibration modes. For simplicity, the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same length and boundary conditions are used as Ritz base functions with necessary modifications to account for shear strain in the Timoshenko beam. The new method can transform two coupled partial differential equations governing the transverse vibration of the non-prismatic Timoshenko beam into a set of nonlinear algebraic equations. It significantly simplifies the solution process and is applicable to non-prismatic beams with various boundary conditions. Three examples indicated that the new method is more accurate than the previous perturbation methods. It successfully takes into account the effect of shear deformation of Timoshenko beams particularly at the free end of cantilever structures.

Analysis of Temperature Distribution of Solid and Gas in the Rotary Cooler (회전냉각기에서 고체와 가스의 온도분포해석)

  • 이만승;최주석;전철근
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.25-30
    • /
    • 2002
  • Heat transfer occurring in the rotary cooler was analyzed by applying a one-dimensional steady state. The temperature of inlet gas and the measured temperature of outlet gas were used as boundary conditions. Axial temperature distribution of solid, gas and wall were calculated by solving two differential equations and two algebraic equations under the constraint of two point boundary conditions and operating conditions. The temperatures of outer wall calculated in this study were in good agreement with those measured from running rotary cooler.

NUMERICAL SOLUTION OF THE NONLINEAR KORTEWEG-DE VRIES EQUATION BY USING CHEBYSHEV WAVELET COLLOCATION METHOD

  • BAKIR, Yasemin
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.373-383
    • /
    • 2021
  • In this study, a numerical method deals with the Chebyshev wavelet collocation and Adomian decomposition methods are proposed for solving Korteweg-de Vries equation. Integration of the Chebyshev wavelets operational matrices is derived. This problem is reduced to a system of non-linear algebraic equations by using their operational matrix. Thus, it becomes easier to solve KdV problem. The error estimation for the Chebyshev wavelet collocation method and ADM is investigated. The proposed method's validity and accuracy are demonstrated by numerical results. When the exact and approximate solutions are compared, for non-linear or linear partial differential equations, the Chebyshev wavelet collocation method is shown to be acceptable, efficient and accurate.

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF

Direct identification of modal parameters using the continuous wavelet transform, case of forced vibration

  • Bedaoui, Safia;Afra, Hamid;Argoul, Pierre
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.393-408
    • /
    • 2014
  • In this paper, a direct identification of modal parameters using the continuous wavelet transform is proposed. The purpose of this method is to transform the differential equations of motion into a system of algebraic linear equations whose unknown coefficients are modal parameters. The efficiency of the present method is confirmed by numerical data, without and with noise contamination, simulated from a discrete forced system with four degrees-of-freedom (4DOF) proportionally damped.

Dynamic analysis of constrained multibody systems using Kane's method (케인방법을 이용한 구속 다물체계의 동역학 해석)

  • Park, Jeong-Hun;Yu, Hong-Hui;Hwang, Yo-Ha;Bae, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2156-2164
    • /
    • 1997
  • A new formulation for the dynamic analysis of constrained multibody systems is presented in this paper. The formulation employs Kane's method along with the null space method. Kane's method reduces the dimension of equations of motion by using partial velocity matrix introduced in this study : it can improve the efficiency of the formulation. Three numerical examples are given to demonstrate the accuracy and efficiency of the formulation.

A Sudy on the Undamped Forced Vibration of Nonlinear Two-Degree-of-Freedom Systems (비선형 2자유도계의 비감쇠 강제진동 연구)

  • 박철희;박선재;윤영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.193-199
    • /
    • 1988
  • The forced vibrations of nondissipative nonlinear two-degree-of-freedom system, subjected to periodic forcing functions, are investigated by use of the method of slowly changing phase and amplitude. The first order differential equations are derived for nonrationally solutions and the coupled nonlinear algebraic equations for stationary solutions. Through investigating the response curves of the system, which are obtained numerically by using Newton-Raphson method, it is found that the resonances can occur at more than the number of degree-of-freedom of the system depending on the relation between the nonlinear spring parameters, which has no counterpart in linear systems.

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

Strong formulation finite element method for arbitrarily shaped laminated plates - Part I. Theoretical analysis

  • Fantuzzi, Nicholas;Tornabene, Francesco
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.125-143
    • /
    • 2014
  • This paper provides a new technique for solving the static analysis of arbitrarily shaped composite plates by using Strong Formulation Finite Element Method (SFEM). Several papers in literature by the authors have presented the proposed technique as an extension of the classic Generalized Differential Quadrature (GDQ) procedure. The present methodology joins the high accuracy of the strong formulation with the versatility of the well-known Finite Element Method (FEM). The continuity conditions among the elements is carried out by the compatibility or continuity conditions. The mapping technique is used to transform both the governing differential equations and the compatibility conditions between two adjacent sub-domains into the regular master element in the computational space. The numerical implementation of the global algebraic system obtained by the technique at issue is easy and straightforward. The main novelty of this paper is the application of the stress and strain recovery once the displacement parameters are evaluated. Computer investigations concerning a large number of composite plates have been carried out. SFEM results are compared with those presented in literature and a perfect agreement is observed.