• 제목/요약/키워드: Differential Transformation Method

검색결과 123건 처리시간 0.031초

Comparison Between DCM and Quaternion Transformation in Lever Arm Compensation of Reference System for Flight Performance Evaluation of DGPS/INS

  • Park, Ji-Hee;Shin, Dong-Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제1권1호
    • /
    • pp.45-49
    • /
    • 2012
  • The flight performance evaluation of navigation system is very significant because the reliability of navigation data directly affect the safety of aircraft. Especially, the high-level navigation system such as DGPS/INS, need more precise flight performance evaluation method. The performance analysis is evaluated by comparing between the navigation system in aircraft and reference trajectory which is more precise than navigation system in aircraft. In order to verify DGPS/INS performance of m-level, the GPS receiver, which is capable post-processed Carrier-phase Differential GPS(CDGPS) method of cm-level, have to be used as reference system. The DGPS/INS is estimated the Center of Gravity (CG) point of aircraft to offer precise performance while the reference system is output the position of GPS antenna which is mounted on the outside of aircraft. Therefore, in order to more precise performance evaluation, it needs to compensate the lever arm and coordinates transformation. This paper use quaternion and Direct Cosine Matrix(DCM) methods as coordinate transformation matrix in lever arm compensation of CDGPS reference trajectory. And it compares NED errors of DCM and quaternion transformation in lever arm of reference trajectory via DGPS/INS result.

블록펄스 변환에 의한 비선형계의 준최적제어에 관한 연구 (Suboptimal Control of Nonlinear Systems via Block-Pulse Transformation)

  • 안두수;박준훈
    • 대한전기학회논문지
    • /
    • 제40권12호
    • /
    • pp.1273-1279
    • /
    • 1991
  • In this paper new adaptive approach method for sub optimal control of nonlinear systems is presented. This paper used the method proposed by J.P.Matuszewski for adaptive optimal control scheme and used block pulse transformations for solving the Riccati differential equation which is usually quite this method is estabilished with simulation results and comparisons to existing approaches.

The Centering of the Invariant Feature for the Unfocused Input Character using a Spherical Domain System

  • Seo, Choon-Weon
    • 조명전기설비학회논문지
    • /
    • 제29권9호
    • /
    • pp.14-22
    • /
    • 2015
  • TIn this paper, a centering method for an unfocused input character using the spherical domain system and the centering character to use the shift invariant feature for the recognition system is proposed. A system for recognition is implemented using the centroid method with coordinate average values, and the results of an above 78.14% average differential ratio for the character features were obtained. It is possible to extract the shift invariant feature using spherical transformation similar to the human eyeball. The proposed method, which is feature extraction using spherical coordinate transform and transformed extracted data, makes it possible to move the character to the center position of the input plane. Both digital and optical technologies are mixed using a spherical coordinate similar to the 3 dimensional human eyeball for the 2 dimensional plane format. In this paper, a centering character feature using the spherical domain is proposed for character recognition, and possibilities for the recognized possible character shape as well as calculating the differential ratio of the centered character using a centroid method are suggested.

RADIATION EFFECTS ON MHD BOUNDARY LAYER FLOW OF LIQUID METAL OVER A POROUS STRETCHING SURFACE IN POROUS MEDIUM WITH HEAT GENERATION

  • Venkateswarlu, M.;Reddy, G. Venkata Ramana;Lakshmi, D. Venkata
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권1호
    • /
    • pp.83-102
    • /
    • 2015
  • The present paper analyses the radiation effects of mass transfer on steady nonlinear MHD boundary layer flow of a viscous incompressible fluid over a nonlinear porous stretching surface in a porous medium in presence of heat generation. The liquid metal is assumed to be gray, emitting, and absorbing but non-scattering medium. Governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations by utilizing suitable similarity transformation. The resulting nonlinear ordinary differential equations are solved numerically using Runge-Kutta fourth order method along with shooting technique. Comparison with previously published work is obtained and good agreement is found. The effects of various governing parameters on the liquid metal fluid dimensionless velocity, dimensionless temperature, dimensionless concentration, skin-friction coefficient, Nusselt number and Sherwood number are discussed with the aid of graphs.

EFFECT OF MAGNETIC FIELD ON LONGITUDINAL FLUID VELOCITY OF INCOMPRESSIBLE DUSTY FLUID

  • N. JAGANNADHAM;B.K. RATH;D.K. DASH
    • Journal of applied mathematics & informatics
    • /
    • 제41권2호
    • /
    • pp.401-411
    • /
    • 2023
  • The effects of longitudinal velocity dusty fluid flow in a weak magnetic field are investigated in this paper. An external uniform magnetic field parallel to the flow of dusty fluid influences the flow of dusty fluid. Besides that, the problem under investigation is completely defined in terms of identifying parameters such as longitudinal velocity (u), Hartmann number (M), dust particle interactions β, stock resistance γ, Reynolds number (Re) and magnetic Reynolds number (Rm). While using suitable transformations of resemblance, The governing partial differential equations are transformed into a system of ordinary differential equations. The Hankel Transformation is used to solve these equations numerically. The effects of representing parameters on the fluid phase and particle phase velocity flow are investigated in this analysis. The magnitude of the fluid particle is reduced significantly. The result indicates the magnitude of the particle reduced significantly. Although some of our numerical solutions agree with some of the available results in the literature review, other results differs because of the effect of the introduced magnetic field.

다몸체 시스템의 운동방정식 형성방법 (A method of formulating the equations of motion of multibody systems)

  • 노태수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.926-930
    • /
    • 1993
  • An efficient method of formulating the equations of motion of multibody systems is presented. The equations of motion for each body are formulated by using Newton-Eulerian approach in their generic form. And then a transformation matrix which relates the global coordinates and relative coordinates is introduced to rewrite the equations of motion in terms of relative coordinates. When appropriate set of kinematic constraints equations in terms of relative coordinates is provided, the resulting differential and algebraic equations are obtained in a suitable form for computer implementation. The system geometry or topology is effectively described by using the path matrix and reference body operator.

  • PDF

A DISCRETE FINITE ELEMENT GALERKIN METHOD FOR A UNIDIMENSIONAL SINGLE-PHASE STEFAN PROBLEM

  • Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.165-181
    • /
    • 2004
  • Based on Landau-type transformation, a Stefan problem with non-linear free boundary condition is transformed into a system consisting of parabolic equation and the ordinary differential equations. Semidiscrete approximations are constructed. Optimal orders of convergence of semidiscrete approximation in $L_2$, $H^1$ and $H^2$ normed spaces are derived.

새로운 BPF 변환식을 이용한 동적 시스템의 대수적 보상기 설계 (Algebraic compensator design for dynamic systems using a novel BPF transformation method)

  • 안비오;김민형;김종부;이재춘;오민환;안두수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.595-597
    • /
    • 1998
  • This paper deals with an algebraic compensator design for dynamic systems using a novel BPF transformation method. To obtain an algebraic compensator for the system, block pulse function's differential operation is used. Compare to unalgebraic compensator, proposed algebraic compensator is less sensitive to the measurement noise.

  • PDF

GENERALIZED EULER PROCESS FOR SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS

  • Yu, Dong-Won
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.941-958
    • /
    • 2000
  • Euler method is generalized to solve the system of nonlinear differential equations. The generalization is carried out by taking a special constant matrix S so that exp(tS) can be exactly computed. Such a matrix S is extracted from the Jacobian matrix of the given problem. Stability of the generalized Euler process is discussed. It is shown that the generalized Euler process is comparable to the fourth order Runge-Kutta method. We also exemplify that the important qualitative and geometric features of the underlying dynamical system can be recovered by the generalized Euler process.

블록펄스함수를 이용한 칼만필터설계 (Design of Kalman Filter via BPF)

  • 안두수;임윤식;이승희;이명규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.667-669
    • /
    • 1995
  • This paper presents a method to design Kalman filter on continuous stochastic dynamical systems via BPFT(block pulse functions transformation). When we design Kalman filter, minimum error valiance matrix is appeared as a form of nonlinear matrix differential equations. Such equations are very difficult to obtain the solutions. Therefore, in this paper, we simply obtain the solutions of nonlinear matrix differential equations from recursive algebraic equations using BPFT. We believe that the presented method is very attractive and proper for the evaluation of Kalman gain on continuous stochastic dynamical systems.

  • PDF