• Title/Summary/Keyword: Differential Quadrature Method (DQM)

Search Result 115, Processing Time 0.023 seconds

Vibration Analysis of Curved Beams Using Differential Quadrature (수치해석(미분구적법 DQM)을 이용한 곡선보의 진동분석)

  • Ki-Jun Kang
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.199-207
    • /
    • 1999
  • The differential quadrature method (DQM) is applied to computation of eigenvalues of the equations of motion governing the free in-plane and out-of-plane vibrations for circular curved beams. Fundamental frequencies are calculated for the members with various end conditions and opening angles. The results are compared with existing exact solutions and numerical solutions by other methods (Rayleigh-Ritz, Galerkin or FEM) for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

  • PDF

Elastic stability analysis of curved steel rib using differential quadrature method (DQM) (미분 구적법 (DQM)을 이용한 곡선 강지보의 안정성 해석)

  • Kang, Ki-Jun;Kim, Byeong-Sam;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.279-290
    • /
    • 2004
  • The differential quadrature method (DQM) for a system of coupled differential equations governing the elastic stability of thin-walled curved members is presented, and is applied to computation of the eigenvalues of out-of-plane buckling of curved beams subjected to uniformly distributed radial loads including a warping contribution. Critical loads with warping, which were found to be significant, are calculated for a single-span wide-flange beam with various end conditions, opening angles, and stiffness parameters. The results are compared with the exact methods available. New results are given for the case of both ends clamped and clamped-simply supported ends without comparison since no data are available The differential quadrature method gives good accuracy and stability compared with previous theoretical results.

  • PDF

Buckling Analysis of Arches Using DQM (DQM을 이용한 아치의 좌굴해석)

  • Ji-Won Han;Ki-Jun Kang
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.220-229
    • /
    • 1997
  • The differential quadrature method (DQM) is applied to computation of the eigenvalues of the equations governing in plane and out-of-plane buckling. In-plane buckling and twist-buckling under uniformly distributed radial loads are investigated by this method. Critical loads are calculated for various end conditions and opening angles. Results are compared with existing exact solutions where available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used. New results are given for two sets of boundary conditions not previously considered for this problem clamped-clamped and clamped simply supported ends.

  • PDF

In-Plane Extensional Vibration Analysis of Curved Beams using DQM (미분구적법을 이용한 곡선보의 태평면 진동분석)

  • Kang, Ki-Jun;Kim, Byeong-Sam
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.99-104
    • /
    • 2002
  • DQM(differential quadrature method) is applied to computation of eigenvalues of the equations of motion governing the free in-plane vibration for circular curved beams including mid-surface extension and the effects of rotatory inertia. Fundamental frequencies are calculated for the members with various end conditions and opening angles. The results are compared with numerical solutions by other methods for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

Free Vibration Analysis of Compressive Tapered Members Resting on Elastic Foundation Using Differential Quadrature Method (미분구적법(DQM)을 이용한 탄성지반 위에 놓인 변단면 압축부재의 자유진동 해석)

  • 이병구;최규문;이태은;김무영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.629-638
    • /
    • 2002
  • This paper deals with the free vibration analysis of compressive tapered members resting on elastic foundation using the Differential Quadrature Method. Based on the differential equation subjected to the boundary conditions, adopted from the open literature, which governs the free vibrations of such member, this equation is applied to the Differential Quadrature Method. For computing natural frequencies, the numerical procedures are developed by QR Algorithm, in which the Chebyshev-Gauss-Lobatto method is used for choosing the grid points. The numerical methods developed herein for computing natural frequencies are programmed in FORTRAN code, and all solutions obtained in this study are quite agreed with those in the open literature.

Differential quadrature method for free vibration analysis of coupled shear walls

  • Bozdogan, K.B.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.67-81
    • /
    • 2012
  • Differential Quadrature Method (DQM) is a powerful method which can be used to solve numerical problems in the analysis of structural and dynamical systems. In this study the governing equation which represents the free vibration of coupled shear walls is solved using the DQM method. A one-dimensional model has been used in this study. At the end of study various examples are presented to verify the accuracy of the method.

Mechanical analysis of non-uniform beams resting on nonlinear elastic foundation by the differential quadrature method

  • Hsu, Ming-Hung
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.279-292
    • /
    • 2006
  • A new approach using the differential quadrature method (DQM) is derived for analysis of non-uniform beams resting on nonlinear media in this study. The influence of velocity dependent viscous damping and strain rate dependent viscous damping is investigated. The results solved using the DQM have excellent agreement with the results solved using the FEM. Numerical results indicated that the DQM is valid and efficient for non-uniform beams resting on non-linear media.

Out-of-Plane Buckling Analysis of Curved Beams Using DQM (미분구적법(DQM)을 이용한 곡선보의 외평면 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.189-195
    • /
    • 2002
  • The differential quadrature method (DQM) is applied to computation of the eigenvalues of out-of-plane bucking of curved beams. Critical moments including the effect of radial stresses are calculated for a single-span wide-flange beam subjected to equal and opposite in-plane bending moments with various end conditions, and opening angles. Results are compared with existing exact solutions where available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used. New results are given for two sets of boundary conditions not previously considered for this problem: clamped-clamped and clamped-simply supported ends.

Buckling analysis of composite plates using differential quadrature method (DQM)

  • Darvizeh, M.;Darvizeh, A.;Sharma, C.B.
    • Steel and Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.99-112
    • /
    • 2002
  • The differential quadrature method (DQM) is a numerical technique of rather recent origin, which by its continually increasing applications in different problems of engineering, is a competing alternative to the conventional numerical techniques for the solution of initial and boundary value problems. The work of this paper concerns the application of the DQM in the area of the buckling of multi layered orthotropic composite plates with various boundary conditions the buckling of multi layered composite plates with constant and variable thickness under axial compressive static loading is considered. The effects of fiber orientation and boundary conditions on static behavior of composite plates are presented. The comparison of results from the present method and those obtained from NISA II software shows the accuracy and reliability of this method.

In-Plane Inextensional and Extensional Vibration Analysis of Curved Beams Using DQM (미분구적법(DQM)을 이용한 곡선보의 내평면 비신장 및 신장 진동해석)

  • Kang, Ki-jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.8064-8073
    • /
    • 2015
  • One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. This method has been applied to a large number of cases to circumvent the difficulties of the complex algorithms of programming for the computer, as well as excessive use of storage due to conditions of complex geometry and loading. In-plane vibrations of curved beams with inextensibility and extensibility of the arch axis are analyzed by the differential quadrature method (DQM). Fundamental frequencies are calculated for the member with various end conditions and opening angles. The results are compared with exact experimental and numerical results by other methods for cases in which they are available. The DQM gives good accuracy even when only a limited number of grid points is used, and new results according to diverse variation are also suggested.